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ABSTRACT 
 
 
 
Field Programmable Gate Arrays (FPGAs) provide a reconfigurable asset in the 

design of space computing.  “Hardware” configurations are stored in FPGA memory 

elements, which are susceptible to Single Event Upsets (SEUs).  What is the best way to 

detect and mitigate SEUs and correct them before they become functional errors?  The 

Configurable Fault Tolerant Processor (CFTP) consists of a controller FPGA (X1) 

controlling an experiment FPGA (X2), which can be used to test different fault-

mitigation techniques.  This focus of this thesis was to develop and execute a radiation 

test plan to evaluate different experiments in a proton radiation beam at Crocker Nuclear 

Laboratory, Davis, CA.  A shift register was designed to determine a proton flux 

conducive to SEU observation.  The shift register was also modified to create two 

additional configurations, implemented with the memory elements of the Look-Up Table 

and Flip-flops within an FPGA Configurable Logic Block.  The data collected from this 

program was then analyzed for SEU rates and fault susceptibility.  This data was 

extrapolated using a radiation environment model to predict the on-orbit SEU-rate for 

CFTP in the NPSAT1 orbit of 560 km, 35.4 degrees inclination, as well as Virtex II 

FPGAs and at 1000 and 1500 km altitudes. 
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EXECUTIVE SUMMARY 
 
 
 

Computing power in space has been limited in the past by the need to qualify a 

design early in the acquisition process, in order to ensure that the processor will operate 

properly in the space environment for the lifetime of the satellite.  Field Programmable 

Gate Arrays (FPGAs) offer the advantage of reconfigurable computing, where the 

“hardware” configuration is stored in memory elements in an FPGA.  These memory 

elements are susceptible to Single Event Upsets (SEUs).  SEUs, caused by the radiation 

environment in space, can have varying effects on a spacecraft ranging from no 

functional effect to rendering the spacecraft useless.  These SEUs must be detected and 

their effects mitigated to best utilize the advantages of using FPGAs. 

Continuous testing is done to verify best design practices for configuration and 

data redundancy in FPGA design.  The Configurable Fault Tolerant Processor (CFTP) 

provides a test platform to validate different designs, tools, and design techniques.  This 

thesis describes the development and testing process of the CFTP and a brief overview of 

testing for space applications, using the testing of the CFTP in preparation for the launch 

environment as an example.  The focus of this thesis is the development and execution of 

a radiation test plan for use at the Crocker Nuclear Laboratory in Davis, CA.  A shift 

register was designed as a test circuit to determine a proton-flux level that was conducive 

to SEU observation, while running experiments.  The test plan describes two variants of 

the CFTP that were tested.  The first CFTP design, similar to the flight design for Naval 

Postgraduate School Spacecraft Architecture and Technology Demonstration Satellite 

(NPSAT1), uses a Xilinx Virtex I (600,000-gate-equivalient) FPGA as the experimental 

FPGA.  The second CFTP design uses a Xilinx Virtex II (6-million-gate-equivalent) 

FPGA as the experimental FPGA. 

The test plan provides a list of test equipment and a diagram of the test layout that 

was used in Davis, CA.  Three programs were tested in the proton radiation beam: a shift 

register, a CORDIC algorithm, and PIX (a distributed triple-modular redundant, MIPS-

based processor).  The shift register was used to maximize coverage and the probability 



 xx

of detecting an SEU when one occurs in the proton beam.  These results were used to 

establish a proton flux to yield an SEU every 10-30 seconds and extrapolated to establish 

a baseline for SEU prediction on orbit. 

This shift register was also modified to create two additional configurations by 

utilizing different combinations of the SRL16 macro, implemented with the memory 

elements of the Look-Up Table (LUT), and Flip-flops within an FPGA Configurable 

Logic Block (CLB).  A COordinate Rotation DIgital Computer (CORDIC) algorithm was 

also tested on both CFTP boards to validate the benefit to using Triple Modular 

Redundancy (TMR) and partial reconfiguration. 

Focus was then shifted to testing the PIX processor, a distributed-TMR, MIPS-

based processor, designed by Majewicz [7].  The design is too large to fit on the Virtex I-

CFTP, so it was tested solely on the Virtex II-CFTP. 

Prior to radiation testing, two fault injection techniques, using FPGA Editor 

(Xilinx ISE software package) and JBits 2.8 (Xilinx), were used to verify proper 

operation of the experments and determine expected output during testing.  Proton 

radiation testing of fault mitigation designs occurred in the cyclotron at University of 

California-Davis, and results follow the fault injection section.  The data collected from 

the shift register program was then analyzed for SEU rates and fault susceptibility.  This 

data was extrapolated using CREME96 to predict the on-orbit SEU-rate for CFTP in the 

NPSAT1 orbit of 560 km, 35.4 degrees inclination, as well as Virtex II FPGAs and at 

1000 and 1500 km altitudes. 

These results validated the fault-injection tool and were extrapolated to provide an 

estimate of the on-orbit SEU-rate for NPSAT1 as 1 SEU every 6-7 days.  Radiation test 

results showed a relatively consistent SEU-rate for different programs, as was expected.  

This thesis has only scraped the surface for data collection and analysis for CFTP.  

Numerous opportunities for future research exist and are required for a more complete 

guide to the performance of CFTP. 

Current programs should be run with the fault injection tool for longer periods to 

approach asymptotic values (small variances between tests.)  New algorithms need to be  

 



 xxi

developed and tested to explore better fault mitigation techniques.  TMR methods were 

tested with the CORDIC, and PIX implements a distributed TMR design.  Quadded-logic 

methods could also be tested. 

PIX is too large to fit on CFTP-1.  Research should be completed to reduce the 

size of PIX and test this smaller design on CFTP-1.  Finally, an experiment agenda needs 

to be developed for the utilization of CFTP aboard NPSAT1 and MidSTAR1. 
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I. INTRODUCTION 

Computing power in space has been limited in the past by the need to qualify a 

design early in the acquisition process, in order to ensure that the processor will operate 

properly in the space environment for the lifetime of the satellite.  As today’s information 

technology continues to expand according to Moore’s law [1], spacecraft designers are 

limited from using the most current technology.  Additionally, hardware designs must be 

completed, tested, and software written for vital spacecraft functions within the 

design/acquisition timeline.  This problem is mitigated to a degree by the use of Field 

Programmable Gate Arrays (FPGAs).  A “hardware” configuration is stored in memory 

elements in an FPGA, and FPGAs are reconfigurable.  This allows for testing and 

qualifying the actual hardware, but also allows for continued development of the 

application configuration that will be instantiated on the FPGA.  These save time and 

money in the design of systems, as well as redesign costs to fix errors.  The trade space 

with FPGAs, though, is reliable computing. 

With the increased usage of FPGAs in space applications, reliable computing is a 

continuing area of concern.  Single event effects (SEEs), caused by the radiation 

environment in space, can have varying effects on a spacecraft ranging from no 

functional effect to rendering the spacecraft useless.  These SEEs can be mitigated with 

good designs that use redundancy techniques for data verification.  With the advent of 

FPGAs, the “hardware” now becomes susceptible to SEEs, where previous hardware 

configurations were not.  In an FPGA, the configuration is instantiated into a series of 

logic blocks consisting of Look-Up Tables, Flip-Flops, and control signals and signal 

routing [2].  Because this configuration is not hardware but memory contents, an upset bit 

is no longer necessarily just a data error, but could result in a configuration error.  In a 

worst-case scenario, this could lead to a new configuration that disables the spacecraft 

permanently. 

To avoid such drastic consequences, continuous testing is done to verify best 

design practices for configuration and data redundancy in FPGA design.  The 

Configurable Fault Tolerant Processor (CFTP) provides a test platform to validate 
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different designs, tools, and design techniques.  This thesis reports on the testing of some 

of those designs in the cyclotron at University of California-Davis, as well as the 

application of the JBits program by Xilinx, Corp to the determination of fault tolerance 

[3].  Test results also establish a baseline for on-orbit operation for CFTP, which will be 

flying on the Naval Postgraduate School Spacecraft Architecture and Technology 

Demonstration Satellite (NPSAT1) and the Midshipman Space Technology and 

Applications Research Satellite mod 1 (MidSTAR).  Both satellites will be launched on 

an Atlas V-401 in October 2006 as part of the Space Test Program (STP-1), shown in 

Figure 1.   

 

 

Figure 1.   STP-1 Payloads (from [13]) 
 

Chapter II provides a brief summary of the space radiation environment and the 

design of CFTP with appropriate references cited for a more detailed description.  

Following the background of the intended operating environment and processor design, a 

review of various testing methods is provided in Chapter III.  Radiation testing is a small 

portion of the testing that is completed for any electronic device, especially one intended 

for space applications. 
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For a complete understanding of testing involved with electronics, hardware 

validation and software testing are first described, leading into integration testing, where 

the CFTP design is validated.  Because CFTP is designed to operate in space, a review of 

the space qualification process and associated environmental testing is then provided.  

One part of environmental testing is radiation testing.  Radiation in space (high-energy 

particles) contributes to two primary effects on electronics.  The first is deterioration of 

the electronics due to Total Ionizing Dose (TID), and the second is Single Event Effects 

(SEE) [4].  Chapter IV describes radiation test preparations and test design requirements 

to address the second effect, of which the primary concern is Single Event Upsets 

(SEUs). 

Three test circuits were developed for this phase of the development.  The first 

test circuit is a series of shift registers instantiated on X2 (the experiment FPGA) to 

utilize as much area as possible.  This was developed to maximize coverage and the 

probability of generating an error when an SEU occurs in the proton beam.  A maximal-

length Linear Feedback Shift Register (LFSR) was used on X1 (control FPGA) to 

generate pseudo-random 1s and 0s.  These data bits were sent to X2 for shifting through 

the registers.  The output of each series of shift registers was then processed to identify 

potential data-bit SEUs.  This design was tested on a Virtex-1 board (CFTP-1) and a 

similar board that utilizes a Virtex-II FPGA as X2 (CFTP-2) [5].  These results were 

extrapolated to establish a baseline for SEU prediction on orbit. 

A COordinate Rotation DIgital Computer (CORDIC) algorithm was also tested on 

both CFTP boards to validate the benefit to using Triple Modular Redundancy (TMR) 

and partial reconfiguration.  An alternate version of the CORDIC that does not use TMR 

was also tested [6]. 

Focus was then shifted to testing the PIX processor designed by Majewicz [7].  

This is a MIPS 3000 processor that uses a distributed, pipelined, TMR design.  The 

design is too large to fit on CFTP-1, so it was only tested on CFTP-2. 

All three programs were first tested with fault-simulation techniques.  Xilinx ISE 

software and JBits were used to emulate faults prior to testing at UC-Davis.  These fault 

simulation techniques and the testing results are described in Chapter V.  These results 
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were then compared to results from radiation testing.  Test results validated operation of 

these programs in a radiation beam, as well as validating the fault-simulation tools.  This 

data also provides a baseline for SEU prediction on orbit and a basis for follow-on 

programs to be tested with the CFTP experiment.   

Finally, Chapter VI summarizes testing results and provides predictions for on-

orbit operation.  Additionally, recommendations are provided for future radiation testing 

at UC-Davis and on-orbit experiments.  While ground testing cannot perfectly imitate the 

conditions and actual events in space, radiation testing is an extremely useful tool to 

validate electronics design and predict system operation on-orbit. 
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II. BACKGROUND 

Electronic components are susceptible to single event effects (SEEs) when 

operated in space.  This is due to the high-radiation environment that consists of high-

energy neutrons, protons, and heavy ions [8].  This environment must be understood, and 

protection against its effects needs to be incorporated into the design of systems intended 

for space applications.  Application Specific Integrated Circuits (ASICs) have been 

designed to survive this environment through radiation hardening and redundancy.  The 

hardware configuration of these devices is not susceptible to bit upsets.  With the advent 

of Field Programmable Gate Arrays (FPGAs), the design configurations are stored in 

memory as configuration information.  A primary advantage is the flexibility to change 

design errors through modification of the configuration information, or even upload a 

new configuration to accomplish a new mission.  Software re-configuration capability 

poses a problem in space, though. 

In ASICs, SEEs might change a data bit, which could be restored through good 

design and incorporation of error detection and correction (EDAC) circuitry.  With 

FPGAs, an SEE could change the configuration of the processor and render the 

equipment or even the spacecraft useless.  Due the extensive resource investment (time 

and money) into each spacecraft, the risk of losing the function of a satellite due to SEE 

is unacceptable [9].  Techniques must be incorporated to mitigate the adverse effects of 

SEEs, more specifically Single Event Upsets (SEUs).  One such approach is to use triple 

modular redundancy (TMR) with partial reconfiguration [10].  This approach is at the 

core of the design for the Configurable Fault Tolerant Processor (CFTP).  CFTP utilizes 

two FPGAs, one as a controller and the other as an experiment platform.  The TMR 

processor is instantiated on the experiment FPGA, where the data is majority voted.  

Ideally, in the event of an SEU, the corrupted data is voted out.  In his thesis, Hulme 

provided a thorough explanation of the CFTP design and mitigation options and selection 

[8]. 

CFTP is also designed to provide a testbed for other experiments.  Various 

methods of testing these designs exist, but this thesis focuses on three areas: 
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configuration alteration using Xilinx FPGA Editor, fault injection with a JBits-based tool, 

and radiation testing [11].  Radiation testing used proton radiation produced at the 

cyclotron of the Crocker Nuclear Laboratory at the University of California-Davis.  To 

better understand the results of radiation testing, a background of the design, assembly, 

and testing of CFTP is provided in the next chapter.   
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III. INTEGRATION AND TESTING 

A. TYPES OF TESTING 
Descriptions of testing for computers designed for the space environment begin 

with two branches: hardware and software.  Both items are tested at the unit level up 

through the system level.  After software is merged with hardware, testing proceeds to 

verify proper integrated system operation.  Testing then continues for on-orbit 

calibration, verification of proper equipment operation and potential for troubleshooting 

[9]. 

1. Hardware Testing 
Hardware testing starts with component testing.  The process then proceeds 

through acceptance testing to a functional test.  The following describes the hardware 

manufacturing and test process used by David Rigmaiden, Electronics Technician for the 

NPS Space Systems Academic Group, for CFTP [12]. 

Component testing started with part selection.  Because CFTP was designed to 

operate in the space environment, radiation hardened parts were desired.  CFTP is an 

experiment, and as such, is not strictly limited to only radiation-hardened components for 

production.  The CFTP flight board will instead consist of military specification 

(MILSPEC) parts, with the exception of the power supplies, which are one grade higher 

than MILSPEC, and the FPGAs, which are radiation hardened.  After the components 

were received and the design board had been fabricated, a fit test was performed.  The 

assembled board is pictured in Figure 2.  This test ensured that all components fit on the 

board as designed.  If components do not integrate as designed, further investigation is 

required to determine whether a part is faulty, if the circuit board was improperly 

fabricated, or if the design is bad.  After the fit test yields the desired results, the board is 

then assembled without major components.  This consists of the voltage regulators and 

passive components, such as resistors and capacitors [12].   
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Figure 2.   Assembled CFTP Board (from [13]) 
 

Power is then supplied to the board with the base power supply, which is a 5-volt 

source for CFTP.  All pins are tested for the expected voltage, and the power is left on for 

at least one day to verify the board is capable of sustaining a continuous load.  Power is 

removed from the board, and the simpler silicon devices, consisting of the Flash memory, 

Synchronous Dynamic Random Access Memory (SDRAM), and Electrically Erasable 

Programmable Read Only Memory (EEPROM), are attached.  The board is then powered 

up again, and the board is checked to verify serial communication is capable with the 

EEPROM [12].  The boot program and test bench for the EEPROM was generated using 

Xilinx ISE software. 

The configuration control FPGA (X1) is then attached to the board with a thermal 

epoxy and soldered at all pin connections with additional solder at the corners.  The 

solder at the corners, termed “spiking,” provides additional stiffness.  The epoxy serves 

two purposes.  The first is to provide additional support to the solder joints during the 

high vibration environment experienced during launch.  The second purpose is to provide 

a heat sink for the FPGA during operation, which helps provide heat dissipation in 

addition to the heat radiated from the exposed face of the FPGA [12]. 
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After the solder and epoxy have hardened, a clock signal is sent from the boot 

EEPROM out through X1 to verify the pin connections.  After a clock signal is verified, 

the experiment FPGA (X2) is soldered and glued to the circuit board, and the board is 

ready for software integration testing [12]. 

2. Software Testing 
A primary method of software testing is accomplished with simulation.  For 

example, the CFTP design uses a Virtex I Pro 600 (XQV600) FPGA for both the 

configuration/experiment control processor (X1) and the experiment processor (X2).  The 

programming for X1 has multiple modules that comprise the whole, all of which must be 

tested.  The Xilinx Integrated Software Environment (ISE) software can be used to 

instantiate these modules, written in VHDL, on a given FPGA (XQV600 in this case).  

The ISE software enables users to “synthesize and compile FPGA and Complex 

Programmable Logic Devices (CPLD) devices” [14].  A testbench can then be designed 

with ModelSim or other simulation software to verify that the modules and overall design 

operates as expected.  A common and highly recommended practice for any software 

design and testing is to plan the design in stages and test each stage as it is completed 

[15].  This accomplishes two things.  The first is that this approach is conducive to a 

modular design, which allows for parallel design/programming and enables easier 

implementation of upgrades.  The second is that any coding errors are located earlier in 

the design process, saving time and cost. 

Various simulation programs exist to help verify proper operation.  As mentioned 

in the example above, ModelSim was used in conjunction with ISE for parts of the CFTP 

testing [16].  ModelSim supports VHDL simulation.  Not all simulation can be 

accomplished with a commercial program, though.  A program to simulate the design 

must be designed when no product is readily available.  This was necessary for the 

configuration control FPGA (X1) of CFTP due to the complexity of the design.  These 

programs and simulations are modified to test a given design. 

All operation and interface software was developed by Mindy Surratt, research 

associate for the CFTP project [17].  A complete picture of the interface and control 

modules on X1 is shown in Figure 3.  The initial step was to develop the Very High 

Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) code to 
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interface from the CFTP board through the PC/104 bus to the ARM processor.  (The 

surrogate processor for the development board is a TMZ104 processor.)  The ARM 

processor is the interface between the CFTP experiment and data bus of the spacecraft 

(Command and Data Handler (C&DH) for NPSAT-1.)  As the PC/104 module was 

developed and simulated, the CFTP board was completely assembled.  The PC/104 

module was integrated with and tested on the hardware, and further modules were 

developed and tested on the cftp board. 

3. System Integration and Testing 
Testing was successfully accomplished by programming X1, through the JTAG 

(IEEE 1149.1/Boundary Scan), port using iMPACT (part of ISE) to write a constant 

value (“2” was used) from X1 to the sTMZ104 through the PC/104 bus.  JTAG is a 

testing standard that “defines a hardware architecture and the mechanisms” to support 

circuit board testing using software solutions [18].  iMPACT is the Xilinx download tool 

that uses a parallel connection to the JTAG port on the FPGA [19].  The next step was to 

verify write from processor board to X1, through the PC/104 bus.  X1 was programmed 

to read back various inputs to verify successful read/write communication via the 

PC/104.  At this point, the VHDL testbenches and ModelSim were used to simulate the 

PC/104 modules to determine the clocking sequence and the Xilinx Coregen (part of ISE) 

program was used to create the First In, First Out (FIFO) module to act as a buffer, as 

well as adding flags for “handshaking” to avoid data conflicts [17]. 

Communication between X2 and X1 was tested by programming X2 via JTAG to 

pass a 25 MHz clock to X1.  X1 then printed a “2” out to the PC/104 on 1-to-0 transition, 

indicating a clock signal was present.  Additionally, the signal was routed to an 

Input/Output (I/O) pin, which was connected to an oscilloscope.  After X2 was 

successfully programmed via JTAG, X2 was configured with a 25 MHz clock from X1 

through Selectable Microprocessor Access Port (SelectMAP).  SelectMAP is the fastest 

method of programming an FPGA, because it uses a byte-wide bidirectional-access port 

for reading and writing the configuration data [20].  The 14 I/O-pin and 3 Mode-pin 

connections are shown in Figure 4.   
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Figure 3.   X1 Software Modules (from [17]) 
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Partial reconfiguration was then tested by partially reconfiguring X2 to divide the 

clock down to 12.5 MHz.  Now that programming and partial-reconfiguration tests were 

successful, SelectMAP readback was verified by programming X2 via JTAG, then 

reading out the configuration to X1 via SelectMAP out to the PC/104.   This concluded in 

successful functional tests of the communication between X1 and X2 and the PC/104 bus.  

The software module to enable read and write capability between the Flash memory and 

X1 was developed next.  After successfully erasing, writing, and reading all blocks of the 

Flash memory, the SelectMap interface between X1 and X2 was developed.  Note that 

the capability to read and write to flash from X2 exists but has not been tested yet. 

CFTP utilizes the SelectMAP interface, which provides an 8-bit bidirectional 

data-bus interface, to the Virtex configuration logic [21], as shown in Figure 4.  The 

SelectMAP communications were tested by first programming a clock on X2 via JTAG 

and sending the clock signal through X1 out to the PC/104 bus.  X2 was then 

reprogrammed via SelectMAP from X1 to send a different clock signal (the original 

clock was divided by two).  The clock output on the PC/104 connection was also probed 

with an oscilloscope to verify the clock had the proper frequency.  This same process was 

used to verify proper operation of the SelectMAP readback module.  The separate 

modules were then incorporated into a top level program and integrated with the 

hardware for further testing. 

With all software modules tested and operational, an experiment was chosen to 

test for proper operation.  The process for developing and testing an 

experiment/algorithm is shown in Figure 5.  A COordinate Rotation DIgital Computer 

(CORDIC) algorithm designed by Josh Snodgrass was chosen, because this algorithm 

was previously designed to operate on the Xilinx XQVR600 used in CFTP [17].  This 

algorithm was instantiated on X1 and X2.  The algorithm was provided with a sequence 

of 32-bit 2’s complement numbers starting at zero and incremented by a binary digit.  

This algorithm uses iterative shifts and adds to perform vector rotations of the input angle 

[22].  The output from the X2 algorithm was then compared to the output from the 

algorithm on X1.  To mitigate any timing issues, the same global clock was used for both  
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X1 and X2.  After minor modifications to the X1 interface code, proper operation was 

observed with the same output from X1 and X2.  A fault injection technique was then 

developed to verify proper detection of an error. 

 

 

Figure 4.   CFTP Interconnections (From [17]) 
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Figure 5.   Experiment Design and Test Process 
 

The first method of fault injection utilized FPGA Editor in the Xilinx ISE 

Software.  The configuration diagram was opened, and a utilized component was changed 

to produce a predictable error.  A partial bit file was then generated with the bitgen 

command and the original and the new “faulty” designs.  This partial bit file was a 

configuration bit file based on the difference between the two designs.  This bit file was 

programmed onto X2 via JTAG while the experiment was operating.  The experiment 

error counter started to increment, and the output from X2 differed from the X1 output, as 

expected.  Fault injection using FPGA editor was also used for the shift register designed 

for radiation testing, and the results will be discussed in the next section.  This method 

was useful for determining proper operation of the experiment and to verify the error 

counting and reporting module was operating as desired.  Unfortunately, this method is 

time-consuming. 

A fault injection tool was created by Surratt utilizing the Java-based JBits 2.8 by 

Xilinx [17].  (The Virtex II FPGA required Jbits 3.0.)  JBits is an application 

programming interface (API) into the Xilinx family FPGA configuration bitstream.  JBits 

is tile based, where different tiles represent CLBs, I/O Blocks (IOB), I/O Interfaces (IOI), 

Block RAM (BRAM), BRAM Interfaces (BRAMI), Global Clocks (GCLK), and 

unconfigurable blocks.  A tile map of the Virtex I FPGA is seen in Figure 6.  The fault 

injection tool can be used to select a configuration bit to change or can be set up to inject 

a given number of random configuration bit faults over the entire FPGA, similar to what 

could be expected during radiation testing.  The program creates a full “corrupted” bit 

file, which is programmed into X2 via the JTAG port.  This tool was primarily used to 
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anticipate what faults would be seen during radiation testing.  These faults would be read 

during SelectMAP readbacks and classified as errors when the fault affected program 

operation.  This tool was developed just prior to radiation testing, but yielded interesting 

results in a short time.  One such result was the observation of double reconfigurations, 

when only one would be expected.  Slight modifications were made to the X1/X2 

interface code for all experiments and tested again.  Double reconfigurations for the 

CORDIC algorithm were fixed, but the Shift Register program would still get stuck in a 

reconfiguration loop.  It was decided to proceed with the programs as is and observe and 

compare results during radiation testing.  Radiation testing, in turn, produced similar 

results, which verified the validity of the fault injection tool. 

Radiation testing is also performed during space qualification tests to verify a 

component can withstand the radiation environment of space in terms of total ionizing 

dose and Single Event Latch-up (SEL) [8].  To complete the integration and testing 

overview, a brief description of the space qualitication process and environmental testing 

for NPSAT1 and CFTP integration is provided.  Focus is then shifted to radiation testing 

for CFTP and the observation of radiation effects (SEUs) on the operation of three 

different programs.   

 

 

Figure 6.   Tile Map for Virtex I XQV600 (from [17]) 
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4. Space Qualification/Environmental Tests 
The exponential increase in information-technology performance has led to a 

change in how systems are qualified for space.  The general progression can be 

summarized with the following categories [23]: 

1) component - individual discrete, integrated circuits are qualified 

2) manufacturing process - manufacturing line is qualified 

3) system design - system is qualified 

4) design approach/design tools - hardened by design 

Initially, component qualification was dictated by Military Specification 

Standards (MIL-STD).  Now, the focus is on performance specifications, and 

manufacturers qualify the process, not the component.  The following lists what 

manufacturers must show to demonstrate a given radiation hardness level [23]: 

1) Model verification, design rule verification and performance verification 

2) Statistical Process Control (SPC), Technology Characterization Vehicle 

(TCV) 

3) Evaluation circuits 

4) Parametric Monitors 

a) Particular for GaAs devices under total dose, neutron or proton 
fluence , test structures must monitor sheet resistance, isolation, 
Field Effect Transistor (FET) parameters. 

b) Tests shall also examine Dose-rate latchup, dose-rate upset, SEE, 
Total Ionizing Dose (TID) and displacement damage by protons or 
neutrons. 

The last item highlights the more common purpose for radiation testing.  As 

previously mentioned, radiation testing for CFTP will focus on SEUs and the effect on 

circuit operation.  In addition to radiation testing, components also undergo additional 

environmental testing.  The above processes are primarily applied to electronic 

components.  Further testing is required for circuit cards and system designs.  

Environmental tests are designed to validate these designs. 
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Environmental tests are designed to verify the survivability of the component and 

system for launch and space environments.  For example, the array of testing for NPSat-1 

is listed below [24]. 

1) Functional/Verification Test 

 Functionality will be verified before and after every environmental test. 

2) Static Loads Test 

 The Engineering Development Unit (EDU) will undergo a static loads test 

for qualification. 

3) Random Vibration Test 

 The EDU will undergo three-axis vibration testing for qualification. 

4) Low-Level Sine Sweep Test 

 This test determines vibration modes and will be performed before and 

after each vibration test. 

5) Mechanical Shock Test 

 A shock test on the EDU will be performed to verify survival from the 

spacecraft separation system. 

6) Thermal-Vacuum (TVAC) Cycling 

 Bad solder joints on electronic components will be detected during this 

test. 

7) Electromagnetic Compatibility (EMC) Test 

 This test verifies that the spacecraft electronics are not susceptible to 

damage by radio frequency (RF) emissions during pre-launch, launch and 

orbital environments. 

8) Mass Properties Test 

 Center of Mass and Moments of Intertia data will be determined for 

attitude control. 
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9) Magnetics Test 

 This test is performed to calibrate the magnetometer to be used for the 

attitude control subsystem (ACS). 

System testing for CFTP will be performed at the box level prior to integration 

with NPSat-1.  Box testing will consist of vibration testing, thermal-vacuum cycling, and 

electromagnetic interference (EMI) testing.  Vibration testing will first be accomplished 

in the orientation of launch with just the base plate and a component-less circuit card to 

measure deflection.  Launch orientation of NPSAT1 was shown in Chapter I, and the 

location of CFTP within NPSAT1 is shown in Figure 7.  This data will be analyzed to 

verify no component damage will occur due to incidental contact with other parts of the 

box.  The vibration test is then repeated with the processor card inserted in place of the 

blank circuit card.  This vibration test will verify the components are securely fastened to 

the respective circuit cards, and all components are properly fastened to the base plate.  

This also validates the engineering design of the CFTP project. 

After initial vibration testing is satisfactorily completed (no component loss or 

damage), the power supply is added to the base plate and the processor configuration is 

placed in the vacuum chamber for TVAC cycling.  As mentioned previously, TVAC 

cycling locates bad solder joints that may cause a component to dislodge during launch or 

prevent a signal from passing through the pin.  After TVAC cycling, the entire CFTP 

experiment is assembled in the box and put through another vibration test.  The final 

environmental test for CFTP prior to integration with NPSat-1 is the EMI test.  EMI is 

mitigated first with part selection and design.  Shielded twisted pair (STP) wiring is used 

to minimize conducted EMI with other components in the spacecraft.  Additionally, 

external EMI is mitigated by using an isolated power supply, which also minimizes EM 

leakage.  Radiated EMI is mitigated by containing the CFTP experiment in an aluminum 

box. 

CFTP is ready for integration with NPSAT-1 upon completing this box-level 

testing.  After launch in October 2006, CFTP is ready to run experiments on-orbit and 

provide data to correlate with ground radiation testing. 
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Figure 7.    NPSat-1 Launch Orientation (From [25]) 
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5. Radiation Testing 
Radiation testing was conducted in separate stages.  The first stage was completed 

when FPGA Editor was used to inject a fault to verify proper operation of the given 

experiment.  The JBits-based fault injection tool was then used to generate multiple faults 

during one run period.  These results provided an excellent knowledge base for observing 

real-time radiation test results at UC-Davis, which were conducted in accordance with 

Appendix A.  The final stage of radiation testing then occurs after October 2006, with 

NPSAT-1 and MidSTAR-1 on-orbit.  Fault injection techniques were slightly different 

between the two development boards. 

a. CFTP Virtex I vs. CFTP Virtex II 
The design detailed in [8] will fly on NPSat-1 and MidSTAR-1.  A second 

board was also built by the Naval Research Laboratory and Silver Engineering for 

experiment development and radiation testing.  This second board, referred to as CFTP-2, 

utilizes a Virtex II, 6-million-gate-equivalent FPGA (XC2V6000) for X2.  From the 

interface design standpoint, one significant difference between the two boards is the use 

of different variants of the same flash memory chips (Intel Advanced Boot Block vs. Intel 

Advanced Boot Block+ [blocks are auto-locking]).  The flash memory on CFTP-1 is 

bottom boot; the first eight blocks are eight Kbytes each.  The flash memory on CFTP-2 

is conversely, top boot.  This difference required a modification to the computer code for 

the flash memory.  Additionally, a second flash chip was added due to the increased size 

of a configuration file for a Virtex II FPGA.  These modifications were successfully 

tested on CFTP-2.  Another difference between the two boards is the lack of SDRAM 

memory on CFTP-2.  With the increased capacity of the Virtex II FPGA, the SDRAM 

was deemed unnecessary.  The Virtex II also has a different pinout and array address 

naming convention, which yielded a different user constraint file.  A user constraint file is 

used to specify physical constraints that the user wants to impose, such as a specific 

signal tied to a specific pin or a specific program to a specific area of the FPGA.  The 

constraint files are located in Appendix D.  The major difference, though, is the order of 

magnitude size difference between the two FPGAs.  This enabled the experimenters to 

run the PIX program on the CFTP Virtex II board.  Once these differences were 

understood, the JBits-based fault injection tool was developed for both CFTP boards. 
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b. Ground Testing 
The purpose of radiation testing for CFTP is to determine how an 

algorithm/experiment is going to operate when SEUs occur.  The fault simulators can 

simulate these SEUs by “flipping” a bit from a “1” to “0”, or vice versa, and 

experimenters can observe the operation/performance.  As previously mentioned, using 

FPGA Editor to change an item in the configuration drawing was a tedious and time 

consuming process.  The configuration file (.ncd) is an output from the place and route 

function in Xilinx ISE.  This file was opened in edit mode, and some function of a LUT, 

FF, MUX, routing, etc. was changed.  For example, for the shift register the LUT block 

was changed from a Xilinx macro-function utilizing the RAM memory elements to a 

LUT outputting a constant “1.” The LUT blocks are highlighted squares on the left in 

Figure 8.  A bit difference file was then created and used to program X2 via JTAG to 

simulate the SEU. 

As an alternative, the JBits-based fault simulator was designed with a 

graphical interface, displaying a tilemap as shown in Figure 6.  Specific bits can be 

changed, and the graphical interface makes it easy to observe fault occurrence.  The first 

method of injecting a fault was done by clicking on a particular tile.  The program would 

then randomly flip a bit within that tile, program X2 with the new “faulty” configuration, 

and display the actual location of the injected fault as a red circle.  After a fault triggered 

a reconfiguration, all corrected faults were displayed as triangles.  A picture of the tile 

map with uncorrected (circles) and corrected (triangles) faults is shown in Figure 9.  A 

script was also designed to generate faults at a specified rate to observe multiple faults 

over time [17]. 

The third stage of ground radiation testing was to test the developed 

algorithms in the cyclotron at UC-Davis.  The test plan used for this testing is in 

Appendix A.  The cyclotron at Crocker Nuclear Laboratory bombarded CFTP with 63 

MeV protons to produce SEUs.  The performance of each algorithm was then monitored 

for fault and error handling.  One minor note for radiation testing is that the Virtex I and 

Virtex II FPGAs used for X2 are not radiation hardened.  The manufacturing difference 

between hardened and unhardened Xilinx FPGAs is the addition of an epitaxial layer for  
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the radiation variant.  The epitaxial layer mitigates the likelihood of SEL, as well as 

increasing the total dose tolerance of the FPGA [26].  This should not affect the 

occurrence of SEUs, but may be an area for future studies.  Results from radiation testing 

were then compared to the results from the fault injection tool as described earlier.  

Radiation results will also be used to establish a baseline for expected SEUs and 

experiment operation on-orbit. 

c. On-orbit testing 
All testing described to this point is intended to validate designs and verify 

that systems will withstand the space environment.  Although these tests are intended to 

be as similar to space conditions as possible, spacecraft engineers are hesitant to utilize 

newly developed components or technologies without demonstrated performance in 

space.  A common method for demonstrating this performance is through an 

experimental test bed, such as that provided for CFTP in NPSat-1 and MidSTAR-1.  The 

CFTP design of using a control and experiment FPGA is not new, but has only been 

demonstrated in space on the Adaptive Instrument Module (AIM) launched on the 

Australian FEDSAT-1 on 14 December, 2002 [27].  In addition to demonstrating the use 

of a control and experiment FPGA, CFTP is designed as a test bed to run different 

algorithms to test different reliability strategies and reconfigurability for FPGAs.  

Operational data of different algorithms has been collected through ground testing.  The 

same algorithms will be run on-orbit to validate ground testing results.  More 

importantly, a TMR processor (PIX must be made smaller to fit on the flight-version 

CFTP Virtex I) and other algorithms for configuration-error detection and scrubbing 

techniques can be run to determine best practices and designs. 
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Figure 8.   Xilinx Virtex I Slice (From [14]) 
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Figure 9.   Tile Map Display - JBits and Radiation Testing 
 

The inaccessibility of space is precisely why CFTP-like systems are an 

ideal solution for computer processing in space.  When configuration errors are detected, 

a new configuration (or partial configuration) can be programmed with little to no loss in 

satellite operations.  In this vane, radiation testing for CFTP will help determine best-

practices to detect configuration errors, correct them, and ensure proper operation of the 

processor (and other components of the satellite).  Preparations for radiation testing are 

outlined in the next chapter. 
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IV. RADIATION TEST PREPARATION 

A. CFTP INTERFACE PROGRAM 
The interface software for CFTP was developed in a modular fashion to enable 

simple integration with any X2 experiment.  One key function within the X1 code was to 

generate error reports and print the output from SelectMAP readbacks.  During 

development, “heartbeat” error reports were set to print every three seconds.  This would 

enable the experimenter to verify that his program was still operating and had not stuck in 

a steady state, such as could be caused by an SEL.  SelectMAP readbacks were 

programmed to do a comparison check with the configuration in the Flash memory every 

30 seconds.  This would allow the experimenter to verify the desired number of SEUs 

was occurring.  With a reporting program in place, the next step was to develop a 

program/circuit to help set the proper proton flux level for the desired SEU rate and 

validate results from previous radiation testing with Xilinx FPGAs.  A shift register 

experiment was then developed for X2 to observe SEUs and ensure the proton flux was at 

an appropriate level for data analysis. 

B. SHIFT REGISTER 
A shift register is a simple circuit that shifts 1s and 0s through a series of flip-

flops.  A shift register, which provided for intermediate data comparison, was developed 

for initial testing at the UC-Davis cyclotron. 

1. Purpose 
The desired SEU rate for CFTP radiation testing was arbitrarily chosen to be 2-5 

SEUs per minute.  This rate would be high enough to observe that SEUs were occurring, 

but low enough to enable the experimenters to determine if their algorithm was operating 

properly and decipher the test results.  A simple algorithm was desired to cover the 

maximum amount of physical area on the FPGA chip to allow for the best probability of 

a configuration fault manifesting itself as a data error.  Maximum area is defined here as 

utilizing the maximum number of slices on the FPGA.  Each CLB consists of two slices, 

pictured in Figure 8.  A shift register was chosen due the simplicity of the shift register  
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and the ability to obtain limited SEU location data while the circuit is operating.  The bit 

length of the shift register was then increased or decreased to maximize the area coverage 

of the FPGA. 

2. X2 Design 
The implementation of the shift register needed to allow for SEU detection, 

provide limited location information, and provide for simple length adjustment.  Xilinx 

FPGAs can use the Look Up Tables (LUTs) as a 16-bit memory element for shift register 

implementation with the SRL16 macro.  The first shift register design used only these 

macros.  The second shift register design incorporated flip-flops interleaved with the 

SRL16 macros to increase the area usage of the FPGA.  The final design disallowed use 

of the SRL16 macro, forcing the ISE program to utilize only flip-flops. 

The input for the shift register comes from a maximal-length 15-stage LFSR 

instantiated on X1.  This generates pseudo-random 0s and 1s continuously, until the 

program is stopped.  Because X1 is not in the proton beam, the output from the LFSR 

was assumed to be “safe” from SEU.  Possible SEUs could occur between the input at X2 

and the input of each shift register, and this possibility is addressed in the detection 

design. 

a. Detection 
Detection of SEUs was implemented using a comparison-based technique 

using XOR gates between two different register “trains” [28].  The first design used the 

SRL16E (E is for clock enable) for the shift register.  To most efficiently compare two 

different register trains (further referred to as the a-side and b-side), the sixteenth bit (the 

output of each SRL16E) of each train was routed to an XOR gate.  If any comparison 

output produced a “1”, indicating that an SEU had occurred in one of the trains, a signal 

“sumdiff” was pulled high, as illustrated in Figure 10.  This shift register module was 

then copied 15 additional times to create 16 different columns. 

It is also possible that an SEU could occur between the input of the LFSR 

bit stream to X2 and the start of the shift register trains, previously mentioned, or 

conversely, between the output of the shift registers and the output of X2.  This would 

lead to a fault propagating simultaneously through the a-side and b-side of the shift 

register train, undetectable to the XOR circuitry.  A copy of the shift register was initially 



27 

implemented on X1 to allow for comparison of the sixteen train outputs from X2 to 

detect such an SEU.  This implementation created some anomalous results during 

program operation, so the function was moved to X2.  The output from the a-side of the 

trains were compared against each other using a 16-input XOR.  If the output was a “1”, a 

separate error counter would increment.  It is recognized that two SEUs could propagate 

to produce a “0”, or an undetected fault, but CFTP is designed with the assumption that 

two or more SEUs will not occur at the same time.  The implementation of this secondary 

error detection function is illustrated in Figure 11.    

 

Figure 10.   Shift Register Implementation 
 

 

Figure 11.   Secondary Error Detection 
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b. Location/Constraints 
To address the ability to discern some location data for SEUs, the output 

was designed to reflect a given area of the FPGA.  Sixteen areas were chosen as there are 

42 auxiliary input/output (I/O) pins between X1 and X2 for programmer usage.  Because 

the shift register initially used 2 outputs for each copy of the shift register, sixteen would 

allow for the maximum number of copies of the shift register.  At the same time, sixteen 

columns were a small enough number to easily interpret the data reports during the shift 

register operation. 

Three patterns were considered for generating additional copies of the 

shift register.  The first was a 4x4 checkerboard pattern, where the report output would be 

labeled in a grid pattern A1, A2,…,A4, B1, …, D4.  The other two options were sixteen 

columns or sixteen rows, with all three options pictured in Figure 12.  The checkerboard 

pattern had a potential to yield confusing results, based on interpreting the error reports, 

compared to the simpler column or row format.  A majority of the auxiliary I/O pins for 

X2 were located at the top.  So in an attempt to increase place-and-route efficiency by the 

ISE software, and possibly increasing the length of the shift registers, the column pattern 

was chosen.  This also provides for an easy report layout. 
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Figure 12.   Shift Register Generation Patterns 
 

The VHDL “generate” command was used to make sixteen shift-register 

trains.  The shift-register module and X2 top-level code are listed in Appendix D.  These 

shift-register banks were further defined in a constraint file in the Xilinx ISE software to 

occupy the columns as defined in Figure 12.  The constraint files for the Virtex I and 

Virtex II boards are both listed in Appendix D. 
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c. SRL16 Implementation 
The length of the shift-register train was defined with a global variable.  

This made it easy to increase the size of the shift registers to maximize area coverage of 

the FPGA with different implementations for the Virtex I FPGA or (by enlarging the 

size) for the larger Virtex II chip.  As previously mentioned, the initial shift-register 

design used the SRL16 macro.  More specifically, the SRL16E, which has a clock enable 

function, was used.  This clock enable function was used to stop the shift register when 

performing a SelectMAP readback.  The SRL16E macro uses the four address lines of the 

LUT as configuration control to utilize the SRAM cells of the LUT as a 16-stage delay, 

where each stage can be tapped.  The data shifts on each clock pulse. [29]. 

Because the SRL16E performs as a 16-bit shift register, the output of each 

SRL16E was compared for SEU detection as described earlier.  Additionally, 16-bit 

increments were used when changing the size of the shift register to maximize FPGA 

coverage.  The tested version of the shift register using only SRL16E macros (no flip-

flops) contained 2400 bit shift registers and used 88 percent of the slices.  Area 

constraints during the synthesis process (netlist creation) were a limiting factor that 

prevented using 100 percent of the slices.  Length and slice usage for the other two 

versions of the shift register are summarized in the next section. 

3. Shift Register Variations 
Two additional variations of the shift register were developed to analyze the data 

sensitivity to the LUTs (SRL Macro) and flip-flops.  The intent behind the second shift 

register design was to force the Xilinx software to utilize the LUTs as SRL16E macros 

(like the original shift register design) and the flip-flops, which were not utilized in the 

original design [30].  To do this, the sixteenth AND seventeenth bits were XOR’d and 

routed to the detector.  The design, labeled SRL+1 for SRL plus one bit, is shown in 

Figure 13.  The third variant utilized only flip-flops by disabling the SRL16 macro 

function.  Different designs and the two different Virtex chips led to different length shift 

registers.  Table 1 contains a summary of the different shift register sizes for each 

version, along with the slice usage.  The percentage of slice usage varies varies from 74 

to 97 percent between the various designs on both Virtex chips.  The differences are 
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believed to be due to the implementation of the SRL16 macro versus flip-flops on the 

same Virtex model, and different structure of a slice on the newer Virtex II. 

Due to the modular design of the shift register experiment, only the shift register 

module needed to be changed.  All top-level code was unchanged, and the VHDL code 

for the alternate shift register designs is listed in Appendix D. 

 

Figure 13.   SRL16E and FF Shift Register Design (SRL+1) 
 

Table 1. Shift Register Length (bits) and Slice Usage (%) 

 Virtex I Virtex II 
Shift Register Design Length Slice Usage Length Slice Usage 
SRL16E only 2400 88 12000 91 
Flip-flops only (no SRL) 320 79 1500 74 
SRL16E and flip-flops 2040 89 8500 97 

 

Because proper operation and fault detection reporting was observed with the first 

shift register design, fault injection using FPGA Editor was bypassed for the additional 

variants of the shift register.  All versions were tested with the JBits-based fault-injection 

tool, and the results are discussed in Chapter V along with the results from cyclotron 

testing. 
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4. X1 Design 
The interface VHDL code for X1 was created by Surratt [17].  Shell files for the 

X1 top level code, X1-X2 interface code, clocking code, and the constraint file were 

modified to operate with the experiment program.  SelectMAP and PC/104 modules are 

standard for any experiment and are listed in Appendix D. 

The first task was to create the X1-X2 interface code (listed in Appendix D).  For 

the shift register, this included creating the LFSR to generate the bitstream, a parallel 

shift register, and a counting/comparator module for reports.  The LFSR was based on 

Gulotta’s example and modified for the following polynomial: 15 1X X+ +  [29].  This 

polynomial minimized the tap points to two, but was large enough to generate a pseudo-

random sample of bits.  The next task was implementing a copy of the shift register 

module on X1.  When initial simulations showed anomalous events regarding the 

comparison between the X2 shift registers and the X1 copy, this function was moved 

onto X2.   

The next addition to the interface code was the counting module.  This consisted 

of seventeen variables:  one to count whenever a shift register train did not agree with the 

rest and one for the XOR detector output of each of the sixteen columns.  “Heartbeat” 

reports were printed out to PC/104 every 3 seconds, and a SelectMAP readback was 

completed every 30 seconds.  If any counter reached 128 errors (hex”80”), the part was 

forced to reconfigure.  Sample output reporting from the shift register is shown in Table 

2.  The signal dout allows the experimenter to verify the LFSR is sending 1s (01 01) and 

0s (00 00), and sumdiff is a hexadecimal representation of the XOR detector output from 

each column.  For example, a detected data error in the third column from the right would 

read hex”00 04”.  The signal dout errcnt is the XOR output from the dout output of each 

column, which detects that a possible data error that propagated simultaneously through a 

shift register train.  Lastly, the counters for each column are displayed relative to the 

FPGA, meaning an incrementing counter in one of the right columns indicates an SEU on 

the right side of the FPGA. 
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Table 2. Sample Shift Register Report 
Selectmap Readback: 

Read: 40, Expected: 00, Mask: 00, Location: 027890, MJA: 28, CLB column, left half 

Read: e6, Expected: e4, Mask: 00, Location: 059b73, MJA: 64, CLB column, left half 

 

 

21:57:20 

dout: 00 00    sumdiff: 00 00    dout errcnt: 00    Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   

21:57:22 

dout: 00 00    sumdiff: 00 00    dout errcnt: 00    Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   

21:57:25 

dout: 00 00    sumdiff: 00 00    dout errcnt: 00    Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   

21:57:28 

dout: 00 00    sumdiff: 00 00    dout errcnt: 00    Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   

21:57:31 

dout: 00 00    sumdiff: 00 00    dout errcnt: 00    Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   

21:57:34 

dout: 01 01    sumdiff: 00 00    dout errcnt: 00    Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   

21:57:37 

dout: 01 01    sumdiff: 00 00    dout errcnt: 00    Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   

21:57:40 

dout: 00 00    sumdiff: 00 04    dout errcnt: 00    Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 81 00 00   

21:57:43 

 

Selectmap Readback: 

Read: ba, Expected: fa, Mask: 02, Location: 0076f6, MJA: 6, CLB column, left half 

Read: 40, Expected: 00, Mask: 00, Location: 027890, MJA: 28, CLB column, left half 

Read: 3d, Expected: 3f, Mask: 00, Location: 043eae, MJA: 49, CLB column, right half 

Read: e6, Expected: e4, Mask: 00, Location: 059b73, MJA: 64, CLB column, left half 

 

 

21:57:44 

Selectmap Reconfig... 

 

dout: 00 00    sumdiff: 00 00    dout errcnt: 00    Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00   

21:57:46 

 

Selectmap Readback: 
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21:57:50 

Selectmap Reconfig... 

 

dout: 00 00    sumdiff: 00 00    dout errcnt: 00    Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   

21:57:53 

dout: 01 01    sumdiff: 00 00    dout errcnt: 00    Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   

21:57:56 

dout: 01 01    sumdiff: 00 00    dout errcnt: 00    Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   

21:57:59 

dout: 00 00    sumdiff: 00 00    dout errcnt: 00    Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   

21:58:02 

 

After the interface code was completed, the clocking code (clockGen.vhd) was 

modified.  The 25 MHz clock was initially used to the test the shift register program.  

Analysis of the timing revealed data paths that were taking up to 79 nanoseconds (ns), 

more than the 40 ns duration of the 25 MHz clock.  The clock was then divided down 

once to produce a 12.5 MHz clock.  The copy of the shift register train on X1 was 

removed after dividing the clock, which produced a maximum signal delay of 23 ns.  

Although the timing constraint of the 25 MHz would then have been met, it was decided 

to keep the clock at 12.5 MHz.  The clock code is shown in Appendix D. 

The last item needed for the experiment to operate was the X1 top level code 

(cftp_x1.vhd), which provided overarching control for all the modules on X1.  The 

primary modifications to this code were to ensure the proper signals to and from X2 were 

declared for the X2 experiment.  This code is also shown in Appendix D along with the 

constraint files for the Virtex I and Virtex II boards. 
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V. RADIATION TEST RESULTS 

A. FAULT INJECTION 

1. FPGA Editor 
FPGA Editor allows the user to manually change the configuration of an FPGA.  

This tool was used with the SRL16-only version of the shift register.  The final output of 

the b-side register is XOR’d with the a-side output to produce the sumdiff bit that is sent 

to X1.  The a-side output is also compare with the a-side output from the other 15 copies 

of the shift register.  To produce a singular error, the final output of the b-side register 

was changed to a constant ‘1’.  This was accomplished by changing the function of the 

LUT from a SRL16 shift register to a LUT that outputs a ‘1’.  This only produces an error 

whenever the output bit from the a-side is a ‘0’.  The sumdiff output reads x”80 00,” 

indicating the far left column has a data miscompare.  The dout errcnt remains x”00 00,” 

because the a-side output is still producing the same output as the other 15 shift register 

trains.  The other observable, Col(15:0) errcnt, increments. 

This new configuration was saved, and a bit difference file was created using 

bitgen [14].  This bit file was then programmed onto X2 via JTAG.  The expected results 

described in the previous paragraph were observed.  This process deomonstrated that the 

error counting function in the X1 programming was operating properly.  Because the 

other two versions of the shift register use the same X1 code and X2 top-level code (only 

the shift register module was changed!), they were not tested in this manner. 

2. JBits 
JBits was programmed to inject random errors in the Virtex I design to establish a 

baseline for fault occurrence and reconfiguration prior to radiation testing.  (The fault 

injection for the Virtex II using JBits 3.0 was still under development.).  All three shift 

register versions were tested.  Using a modified MATLAB program designed by Josh 

Snodgrass, the results were first analyzed for 1-to-0 and 0-to-1 transistions [31].  The 

MATLAB script is located in Appendix D.  A preponderance of 0-to1 transitions were 

observed for the SRL16-only and flip-flop-only shift registers.  (The results from these 

two versions were sufficient for pre-radiation observations, so the SRL16-plus-flip-flop 
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version was only briefly tested.)  The second observation was the number of faults 

accumulated before reconfigurations occurred.  These results are shown in Table 3. 

Table 3. JBits Fault Injection Results 

Shift Register 0-to-1 (#) 1-to-0 (#) SEUs (#) Recon’s (#) 
Average 

SEU/Recon 

FF-only (run 1) 68 27 95 24 3.96 

FF-only (run 2) 55 42 97 14 6.93 

SRL16-only 22 4 25 110 0.227 

SRL16 + FF 3 2 5 5 1 

 

B. CYCLOTRON 
As previously stated, radiation testing was performed on the CFTP-1 using the 

three shift register configurations and two CORDIC algorithms.  CFTP-2 was tested with 

the same programs and the PIX processor.  Results from the CORDIC test runs are 

incorporated in an overall analysis for on-orbit SEU prediction.  Otherwise, only shift 

register results were analyzed. 

1. CFTP-1 
Radiation testing was first attempted from 30 August - 1 September 2005.  

Problems were encountered during initial CFTP set-up.  One main problem was that the 

CFTP board and the TMZ104 processor DC-power-supplies were set with a 1-Amp limit.  

This caused the voltage to drop when attempting to program X1.  The current-limit for 

the 6-Volt source (set at 5 Volts) supplying power to the TMZ104 processor was 

increased to 2 Amps.  The processor and board then initialized properly, but the voltage 

for the CFTP board would occasionally drop to 2 Volts, drawing 1 Amp.  Because the 25-

Volt source (also set at 5 Volts) was limited to a 1-Amp maximum, the current-limit 

could not be increased.  The short-term fix was to restart CFTP and re-run the CORDIC 

experiment, which was the first working experiment.  Later refinement of the interface 

code fixed the current-voltage problem, along with using separate power supplies with 

current-limits set at 3 Amps for the processor and the CFTP board. 

Various problems were encountered when attempting to run other experiments, 

too.  The shift register was not properly implemented with the interface code, so the 
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CORDIC algorithm was the only successful experiment run on CFTP-1.  The interface 

code was not yet completed for CFTP-2, so no experiments were radiation tested on 

CFTP-2.  The most significant outcome of the CORDIC testing was the observation of 

SEUs.  The initial setting of the cyclotron produced a flux of 8.48 x 106 protons/cm2-sec, 

which yielded too numerous SEUs to understand what was happening.  So, the setting 

was decreased to produce a flux of 4.27 x 106 protons/cm2-sec.  Proper observation of 

what was happening with the CORDIC algorithm and radiation-induced faults was still 

unachievable, so the flux was reduced two additional times.  The final setting produced a 

flux of 8.42 x 105 protons/cm2-sec.  The output from the CORDIC algorithm still needed 

further refinement to better understand what was happening when SEUs occurred, but the 

flux appeared to be the proper level to observe SEUs approximately every 30 seconds.  

No further testing was accomplished during this visit. 

The August 2005 trip to Davis yielded some lessons-learned.  The primary lesson-

learned was that the testing team needed to arrive with fully functional bit-files ready to 

run on the CFTP boards.  This was not accomplished for the August testing session.  

Fully operational bit-files were prepared and tested before the follow-on trip to Davis in 

November 2005, and non-working experiments were not an issue.  One positive lesson-

learned was that there were a proper number of people to operate and observe the 

experiments: one person programming the experiment, one person observing the 

graphical display, and one person logging/monitoring the current to the CFTP-board.  To 

allow for better understanding while an experiment was operating in the proton beam 

during future testing, the interface code was modified to output the Major address (MJA) 

and the right- or left-half of the FPGA of a fault, along with time stamps for the heartbeat 

reports, readbacks and reconfigurations (see Table 2). 

Armed with an array of experiments and an improved test agenda (see Appendix 

A), testing was completed for CFTP-1 on the first day back at Crocker Nuclear 

Laboratory, November 14, 2005.  The final cyclotron setting from August was used to 

produce a flux of 8.78 x 105 protons/cm2-sec, which yielded one SEU every 10-30 

seconds.  The SRL16-only shift register was tested first, and configuration faults 

appeared every 20 seconds, on average.  The cyclotron settings were determined to 

produce the desired flux, and testing continued.  Shift register and CORDIC results were 
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averaged to calculate an SEU rate, defined as the frequency of configuration faults.  

SEUs occurred every 16.6 seconds on average, for the CFTP-1.  SEU rate for each 

program is shown in Figure 14.   

The MATLAB script used on the fault injection results was used for post-testing 

analysis of the the radiation testing results of the shift-registers on CFTP-1.  The 

summary is shown in Table 4 

 

Figure 14.   SEU Rates for CFTP-1 
 

Table 4. Radiation Testing Results, CFTP-1 

Shift Register 0-to-1 (#) 1-to-0 (#) SEUs (#) Recon’s (#) 
Average 

SEU/Recon 

SRL16-only 16 13 27 7 3.86 

SRL16+FF-run 1 15 25 35 7 5 

FF-only 13 13 26 4 6.5 

SRL16+FF-run 2 76 50 117 19 6.16 
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No significant pattern was observed in the bit transitions, and there was no direct 

correlation with the fault injection tool.  This could signify the true randomness of 

radiation testing.  All shift registers yielded an error-rate within 28% of the mean; 

relatively similar considering the different component usage within each design.  The 

error-rate is defined as the frequency that a configuration fault (SEU) triggers a 

reconfiguration.  Note that a data bit flip can produce multiple increments of the error 

counter as the bit progresses through the shift register, reference Figure 10.  This is of 

note in that a configuration fault that changes the output is assumed to continually 

increment an error counter, producing a reconfiguration.  It is possible that a data bit 

flipped early in the shift register could produce a reconfiguration, too.  A chart of the 

error-rate is shown in Figure 15.  Note that any number of SEUS from 2 to 23 occurred 

before a reconfiguration was triggered.  The reconfigurations with zero SEUs are 

considered flaws in the fault detection program on X1. 

 

Figure 15.   Error-Rate for SRL16+FF (Run Time = 30 minutes) 
 
2. CFTP-2 
The second day was dedicated to testing with CFTP-2.  The first observation was 

that faults occurred much more frequently.  This was expected with the smaller feature 
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size of the Virtex II FPGA, while using the same proton flux as that used for CFTP-1 

testing.  SEUs occurred every 1.69 seconds on average with a graph of the SEU rates for 

CFTP-2 shown in Figure 16.  Bit transitions and error-rates are listed in Table 5.  There is 

a preponderance of 0-to-1 transitions, but the cause is unknown at this time.  There was 

also a larger discrepancy in error-rates between the different versions of the shift register.  

As with CFTP-1, the number of SEUs that triggered a reconfiguration varied as shown in 

Figure 17.   

 

Figure 16.   SEU Rates for CFTP-2 
 

Table 5. Radiation Testing Results, CFTP-2 

Shift Register 0-to-1 (#) 1-to-0 (#) SEUs (#) Recon’s (#) 
Average 

SEU/Recon 

SRL16+FF-run 1 45 3 47 12 3.92 

SRL16+FF-run 2 366 53 414 53 7.81 

SRL16-only 164 8 172 19 9.05 

FF-only 160 17 172 58 2.96 
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Radiation-testing yielded varying results for bit-transitions and error-rates, but the 

SEU rates were similar between different programs run on the same CFTP-board.  This 

information can be used to make a prediction for SEU frequency on-orbit. 

 

 

Figure 17.   Error-Rate for FF-only (Run Time = 10 minutes) 
 

C. ON-ORBIT SEU-RATE ESTIMATE 
The first requirement for estimating on-orbit SEUs is to determine the radiation 

environment in which CFTP will be operating.  CFTP is manifested on NPSAT1, which 

will orbit at 560 km, 35.4 degrees inclination, and MidSTAR1, which will orbit at 492 

km, 46 degrees inclination.  Proton environment data was obtained from the CREME96 

software, which is based on the National Aeronautics and Space Administration’s 

(NASA) AP-8 model [32].  Below 1000 km, the average proton-flux is negligible outside 

the South Atlantic Anomaly (SAA), centered southeast of Brazil at approximately 33 

degrees South latitude, 34 degrees West longitude.  The NPSAT1 orbit falls in this 

region, so the estimate was based on using the peak proton flux, while in the SAA.   
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CREME96 allows the user to select Solar Minimum or Maximum.  Solar 

Minimum was chosen due to the higher resulting proton-flux.  CREME96 then displays 

average flux for 1, 3, 6, 15, 30, 50, and 100 MeV protons, and peak flux for 10, 15, 30, 50 

and 100 MeV protons.  The displayed flux includes all proton energies at and above that 

energy level.  30-MeV protons were chosen, because there is no appreciable increase in 

proton-induced bit-upset cross-section above 30 MeV [2].  The bit cross-section is a 

measure of susceptibility to SEU in terms of cross-sectional area of the FPGA.  Radiation 

testing for CFTP did not include radiation characterization, but the XQV600 Virtex I is 

similar to the 300-series Virtex I FPGA (XQVR300) tested by Fuller [2]. So, the Proton 

SEU Cross Section figure in [2] was used. 

The peak proton flux for 560 km (30 MeV protons) is 202 protons/cm2-sec.  

Dividing the proton flux of the cyclotron testing (8.78 x 105 protons/cm2-sec) by the peak 

proton flux on-orbit yields a flux ratio of 4,341.  Converting the testing SEU-rate (0.0604 

SEU/sec) from seconds to minutes and dividing by flux ratio yields an SEU-rate of 8.35 x 

10-4 SEU/min.  The reader should note that this estimate would be true if NPSAT1 were 

in the SAA for the entire orbit, so this rate was multiplied by a factor to account for the 

fraction of the orbit that NPSAT1 is in the SAA.  NPSAT1 will fly through the SAA 

approximately 15 minutes per 96-minute orbit.  Over a 24-hour period, NPSAT1 will 

orbit the earth 15 times, so NPSAT1 will pass through the SAA approximately 225 

minutes each day.  Multiplying the on-orbit SEU-rate (8.35 x 10-4 SEU/min) by 225 

min/day yields 0.188 SEU/day, or converserly, an SEU will occur every 5.3 days.  The 

SEU-rate estimates using an average proton-flux for 1000 km and 1500 km (49.9 and 236 

protons/cm2-sec, respectively) are summarized in Table 6.   

The SEU-rate for CFTP-1 in NPSAT1 is estimated to be 1 SEU/5-6 days.  This 

estimate does not factor in shielding provided by the spacecraft or aluminum box, so the 

actual SEU-rate will most likely be lower.  If a Virtex II board is flown, the SEU rate will 

increase by an order of magnitude.  Also note the increase in proton flux at higher 

altitudes.  The average proton-flux increases by an order of five just from 1000 km to 

1500 km.  Higher altitudes would provide an even better environment to test fault-

mitigation schemes. 
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Table 6. On-Orbit SEU-Rate Estimates (SEU/day) 

 Peak Flux 
560 km 

Ave Flux 
1000 km 

Ave Flux 
1500 km 

Virtex I 0.188 0.297 1.40 
Virtex II 1.76 2.78 13.1 

Flux - protons/cm2-sec 



44 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 



45 

VI. CONCLUSIONS 

A. SUMMARY 
The purpose of this thesis was to develop a program for radiation testing of CFTP.  

This program was designed to establish a proper proton-flux level to obtain SEUs at a 

rate conducive to follow-on analysis.  These results were also used to validate a fault 

injection tool and estimate the on-orbit SEU-rate for NPSAT1. 

Integration and testing methods were introduced, starting with hardware assembly 

and testing.  Software integration with hardware was discussed, along with a brief 

overview of space qualication of electronic components and how radiation testing is 

incorporated.  The objectives for radiation testing, ground-based and on-orbit, for CFTP 

were stated. 

Radiation test preparations were covered with an explanation of the design 

philosophy of the shift register.  Some valuable lessons-learned were taken from the 

initial test session in August 2005.  One was an equipment issue, where the power-supply 

current-limit of 1 Amp was too low.  This was fixed by using two separate power 

supplies, with each supply current-limit set at 3 Amps.  Streamlining the interface code 

prior to November testing also helped prevent power supply issues.  The key lesson-

learned, though, was that the experimenters needed to arrive with fully functional bit-

files, ready to test.  This was attempted, but not accomplished for the August test-session.  

Bit-files for five experiments for CFTP-1 (three shift-registers and two CORDIC 

algorithms) and for six experiments on CFTP-2 (PIX was added to the CFTP-1 slate) 

were tested prior to arrival at Davis, CA.  This hard-work and preparation was reflected 

in the November test-session, when testing was completed in two days (a day ahead of 

schedule). 

The shift register design was successful in that it utilized the maximum area 

possible on the FPGA, and provided real-time data for configuration faults that yielded 

data errors and triggered reconfigurations.  This design was verified by introducing a 

configuration error using FPGA Editor and using a JBits-based fault-injection tool.  For 

CFTP-1, the SRL16-only shift-register appeared to be the most sensitive to faults 
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propogating as data errors.  For CFTP-2, though, the flip-flop-only shift-register appeared 

most sensitive.  The differences could be due to the different structure of Virtex 1 and 

Virtex II FPGAs, but is more likely due to the small statistical sample used for analysis.   

The number of faults/SEUs that occurred during testing of CFTP-2 versus CFTP-

1 was significantly different.  SEUs occurred every 16.6 seconds, on average, for CFTP-

1, while SEUs for CFTP-2 occurred every 1.69 seconds, on average.  This order of 

magnitude difference is believed to be due to the smaller feature size and closer packing 

of the Virtex II FPGA.  Continued development and more radiation testing is required to 

generate more statistically relelvant data.  Radiation test results showed a relatively 

consistent error-rate for different programs, as was expected. This information was then 

extrapolated using information from CREME96 to estimate the on-orbit SEU-rate for 

CFTP to be 1 SEU/5-6 days. 

Any of the shift-register configurations or CORDIC algorithms for CFTP-1 may 

be used as experiments on-orbit with NPSAT1 or MidSTAR1.  Ideally, though, the PIX 

processor will be modified and reduced in size to be instantiated onto CFTP-1 for on-

orbit testing.  This is a good project for future research. 

B. FOLLOW-ON RESEARCH 
This thesis has only scraped the surface for data collection and analysis for CFTP.  

Numerous opportunities for future research exist and are required for a more complete 

guide to the performance of CFTP. 

Current programs should be run with the fault injection tool for longer periods to 

approach asymptotic values (small variances between tests.) 

New algorithms need to be developed and tested to explore better fault mitigation 

techniques. 

TMR methods were tested with the CORDIC, and PIX implements a distributed 

TMR design.  Quadded-logic methods could also be tested. 
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PIX is too large to fit on CFTP-1.  Research should be completed to reduce the 

size of PIX and test this smaller design on CFTP-1.  One possible approach to reduce the 

size is to use a traditional TMR-approach, where the output of three processors is voted, 

vice the distributed architecture of PIX [7]. 

Finally, an experiment agenda needs to be developed for implementation on 

CFTP aboard NPSAT1 and MidSTAR1.  An approach similar to the radiation testing 

developed in this thesis can be used as a template.  The goal would be to prepare the 

same experiments used for radiation testing, or develop new configurations for testing 

on-orbit. 
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APPENDIX A: CFTP RADIATION TEST PLAN 

A. INTRODUCTION 
The NPS-led Configurable Fault Tolerant Processor (CFTP) team will conduct 

proton radiation testing using the Isochronous Cyclotron at Crocker Nuclear Laboratory, 

University of California-Davis on 14 – 16 November 2005.  The devices under test 

(DUT) will be 2 different development boards based on the CFTP design.  The devices 

are representative of 2 operational units, similar to Naval Postgraduate School’s (NPS) 

CFTP Virtex-I (CFTP-1) design, that are being assembled for integration on two 

spacecraft that are scheduled to be launched October 12, 2006.  The Naval Research 

Laboratory (NRL) built a board for radiation testing based on the CFTP design with a 

Virtex-2 FPGA for the experimental FPGA (X2).  This test plan outlines facilities, 

equipment, beam configurations, test descriptions and procedures, agenda and personnel. 

B. PURPOSE 
The two sample devices will be tested for single event effects (SEE).  They will 

also be monitored for the onset of cumulative (total dose) effects, but the experiments 

planned should not approach the total dose ratings of either FPGA..  The primary intent 

of this testing is to assess the Single Event Upset (SEU) susceptibility of the CFTP design 

(under various configuration loads), determine the SEU-induced fault tolerance, and 

evaluate partial reconfigurability of tested designs.  Test results will also provide a 

baseline for on-orbit observations of the same experiments.  Post-launch modifications to 

the configuration loads are possible, though more difficult due to bandwidth limitations, 

so early determination of robust design strategies is beneficial. 

C. DEVICES UNDER TEST (DUT) 

1. CFTP-1 Development Board 
The CFTP-1 development board uses two Xilinx Virtex I, 600,000 gate 

equivalent, Field Programmable Gate Arrays (FPGAs).  This development board was 

built at Naval Postgraduate School as a prototype for the flight boards and software 

development model.  Highlighted components are seen in Figure 18.   
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Figure 18.   CFTP-1 Layout 
 

One FPGA is used as a configuration controller and is referred to as X1.  The 

second FPGA is the configurable processor, referred to as X2.  The focus of this testing 

will be on X2.  The proton beam pattern on X2 is seen in Figure 19.   

2. CFTP-2 Development Board 
The second development board, pictured in Figure 20.  was built by the Naval 

Research Laboratory and Silver Engineering.  This board was built specifically for 

radiation testing and uses a Xilinx Virtex II, 6 million gate equivalent, FPGA for X2.  X1 

is a Virtex 1 FPGA, (same as CFTP-1).  A Triple Modular Redundant (TMR) MIPS-3000 

Processor was originally designed for CFTP-1 to demonstrate the concept of a 

configurable, fault tolerant processor, but does not fit on the Virtex-I FPGA.  This 

experiment (PIX) will only be performed on the CFTP-2 board.  The beam pattern for 

CFTP-2 is pictured in Figure 20.   
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Figure 19.   Proton Beam Irradiation Area 
 

 

Figure 20.   CFTP-2 Layout and Beam Irradiation Area 
 

Irradiation 
beam pattern 

Irradiation 
beam pattern 
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D. TEST EQUIPMENT 

1. UC-Davis Cyclotron 
Figure 21.  shows the physical layout of the South and North Caves of Crocker 

Nuclear Laboratory that will be used for this testing.  The South Cave will be the 

experiment control area, where the experimenter’s will have connectivity to the Linux 

laptops controlling the CFTP boards through a Cat 5 Ethernet cable  The proton beam 

entry point is located in  the North Cave, where the CFTP boards will be irradiated on the 

radiation target testing table.  The irradiation equipment is a 76 inch cyclotron that 

provides monoenergetic proton beams up to a maximum energy of 63 MeV.  The proton 

beam has a diameter of 6 cm (2.4 in) and can be further controlled through a Shielding 

Aperture mounted at the beam output, see Figure 22.  This testing will use the 4 cm 

square aperture to irradiate the entire FPGA, but at the same time, minimize radiation 

spillover to the rest of the CFTP components.  Figure 23.  shows an example setup of 

another experiment completed at the UC-Davis facility, where laser crosshairs are used to 

ensure proper experiment alignment with the proton beam. 

 

Figure 21.   Crocker Nuclear Laboratory 
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Figure 22.   Beam Test Stand with Square Aperture 
 

 

Figure 23.   Test Stand for Experiments 

Proton Beam output 
~ 2 ½ in. Shielding Aperture 
Proton Beam output 
~ 2 ½ in. Shielding Aperture 
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2. Test Configuration (Physical Setup) 

a. CFTP-1 
Because the CFTP boards are slightly different and were manufactured at 

different locations, each board has a unique test layout.  The test stand for CFTP-1 is seen 

in Figure 24.  A clear plastic plate was placed in front of the board to prevent accidental 

contact that may damage the board.  A square hole was then cut into the plate directly 

over the X2 FPGA to prevent proton energy dissipation through the plastic.  This stand 

will enable irradiation of the X2 FPGA only.  Initial tests will be conducted with X2 

orthogonal to the proton beam, because the goal is to maximize SEUs and assess how the 

configuration responds.  Future tests could evaluate the FPGA at different incident angles 

to the beam using a remotely controlled rotating table that would allow the experiment to 

rotate while performing a dynamic test. 

A Linux-based interface computer will be used in the North Cave (proton 

beam) to control the experiment.  This computer will be connected to the experiment 

serially to the stack controller and in parallel with the JTAG port.  The interface computer 

will then be connected to the control computer in the South Cave via a 75 foot Ethernet 

cable.  The interface computer will be used to load and configure CFTP via the stack 

controller.  The control computer will be able to start, stop, and reset CFTP; receive and 

log data from CFTP; and display in real time the SEU count, last error condition code, 

and other diagnostics.  The list of hardware and software are summarized in Table 7 and 

Table 8, respectively. 

Two power supplies will be used; the first power supply will provide 5 

volts (from the 6 V source).  This will allow experimenters to monitor the current to the 

CFTP board itself.  This power supply (Agilent E3631A) will be controlled by the control 

computer via a serial connection (RS-232).  Current monitoring will be accomplished 

using the Microsoft Excel plug-in provided by Agilent Technologies.  The second power 

supply will provide power to the stack controller and hard drive.  Both power supplies 

will plug into a remote power controller to enable experimenters to shut down the 

experiment via the Ethernet connection, if necessary.  The cabling layout for CFTP-1 is 

pictured in Figure 25.   
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Figure 24.   CFTP-1 Test Stand 
 

90 degree connector pins 

X2 FPGA 

Processor Stack 
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Table 7. Equipment List 

Equipment Purpose Box 
CFTP-1 Experiment 
 Vice 

 
Mount experiment 

 

Power Supply #1 (E3631A) 
 Power cord 
 60 ft serial cable 

Power CFTP-1 Board 
 
Control E3631A power supply 

 

Power Supply (HP ???) 
 Power cord 

Power CFTP-1 Stack controller  

Power Controller Remote shutdown capability  
CFTP Interface Laptop 
 Power cord 
 Ethernet cable 
 Xilinx parallel cable 
 10 ft serial cable 

Serial ppp connection to CFTP Stack Controller 
 
Connection to hub in North Cave 
Parallel JTAG connection to CFTP Board. 
Serial connection to CFTP-1 

 

Monitor 
 Keyboard 

Monitor CFTP experiments during setup  

Control Laptop (Dell D810) 
 Power cord 
 Ethernet cable 

Control experiment from outside vault. 
 
Connection to hub in South Cave 

 

Control Laptop (Dell D610) 
 Power cord 
 Ethernet cable 

Control power supply; log current. 
 
Connection to hub in South Cave 

 

Ethernet hub (D-Link) 
 Power cable 

South Cave  

Ethernet hub (???) 
 Power cable 

North Cave  

Webcam 
 Power cable 
 Ethernet cable 

Monitor current 
 
Connection to hub in North Cave 

 

CFTP-2 Experiment 
  

  

Power Supply #2 (E3631A) 
 Power cord 

Power CFTP-2 Board 
Note: use 60 ft serial cable listed above 

 

Power Supply (???) Power CFTP-2 Backplane and hard drive  
CFTP Interface Laptop ( 
 Power cord 
 Ethernet cable 
 Xilinx parallel cable 
 10 ft serial cable 

Serial ppp connection to CFTP Stack Controller 
 
Connection to hub in North Cave 
Parallel JTAG connection to CFTP Board. 
Serial connection to CFTP-2 

 

XX Spare Ethernet cables   
Power strip Power laptops/experiments in South Cave  
Digital Camera   
2 Walkie Talkies Communicate between North and South Caves  
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Table 8. Software List 

Control Laptop Interface Laptop 
Windows XP OS Linux OS 
MS Office (Excel for current logging) Xilinx tools Impact 

 XDL 
Putty (Secure Shell program) Configuration files 
Xilinx ISE JBits 2.8 
Agilent E3631A Excel plug-in  
  
CDs  
Backup of configuration files  

 
 
 
 
 
 
 

 

Figure 25.   CFTP-1 Cabling Layout 
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b. CFTP-2 
CFTP-2 is a stand-alone experiment that is operated concurrently with 

CFTP-1 at NPS.  This set-up will be used at Davis to minimize equipment deviations 

during testing and allow for work on either CFTP board while the other is being 

irradiated.  CFTP-2 will utilize a TMZ104 Stack controller and a TRI-M Engineering 

DEV104-ISA backplane for testing.  Power is normally supplied to CFTP-2 with one 

power supply; however, current monitoring to the CFTP board could not be achieved.  

For radiation testing, an additional PC/104 connector was added between the backplane 

and CFTP board with the 5 V pin clipped and routed to a separate power supply.  This 

second power supply will be another Agilent E3631A, which enables current monitoring 

using the same process as that for CFTP-1.  The cabling layout for CFTP-2 is similar to 

that of CFTP-1, with differences seen in Figure 26.   

 

Figure 26.   CFTP-2 Cabling Layout 
 

E. TEST DESCRIPTIONS/PROCEDURES 

These tests will evaluate current programs/configurations for SEU tolerance and 

partial reconfiguration and provide experimental data to enhance configurations for future 

radiation testing and on-orbit operation.  Care will be taken to mitigate total dose 

radiation damage to either experiment, which will be accomplished by limiting the total 

fluence level to less than 1 kRAD for each experiment.  A summary of planned 

experiments are shown in Table 9. 
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Table 9. Experiment Summary 

Experiment Purpose 
Beam Exposure Verify proper aperture is being used for 

FPGAs. 
Shift Register (CFTP-1) Verify expected data and configuration SEUs 

and map the configuration errors. 
CORDIC-Approximate (CFTP-1) Evaluate algorithm. 
CORDIC-TMR (CFTP-1) Evaluate algorithm. 
Shift Register (CFTP-2) Verify expected data and configuration SEUs 

and map the configuration errors. 
CORDIC-Approximate (CFTP-2) Evaluate algorithm. 
CORDIC-TMR (CFTP-2) Evaluate algorithm. 
PIX (CFTP-2) Evaluate processor. 
Additional configurations (CFTP-1 or 
CFTP-2) 

Evaluate alternate configurations 

 

The power-up procedure detailed in Table 10 will be followed for all experiments. 

Table 10. Power-Up Procedure 

1. Turn on E3631A Power Supply (Do not connect the CFTP experiment.) 
 Using the Excel plug-in on the serially connected laptop, 
 Set the Voltage Limit on the 6 V source to 5 Volts 
 Set the Current Limit on the 6 V source to 3 Amps 
2. (For CFTP-1) Turn on the E3630A Power Supply 
 Set the Voltage to 5 Volts (Be careful not to subsequently bump the voltage dial.) 
3. Connect the CFTP board to the E3631A Power Supply 
4. (For CFTP-1) Connect the Stack Controller to the E3630A Power Supply 
 (For CFTP-2) Connect the Backplane and Hard drive to the 310 ATX Power Supply 
5. Start current log and chart on laptop. 
6. Simultaneously, turn E3631A Output ON (using laptop) and turn on other power 
supply (use walkie talkies) 
7. Monitor current for anomalies during start-up 

 
1. Beam Exposure 
Obtain a beam exposure using the 4 cm square aperture.  Overlay the exposure on 

top of the X2 FPGA on both CFTP boards to verify sufficient radiation coverage.  Verify 

multiple blank data sheets (Appendix A-2) are available in the experimenter’s area in the 

South Cave.  
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2. Shift Register (CFTP-1) 
Set-up CFTP-1 on the radiation target testing table.  Connect all cables, except 

power to the CFTP board and stack controller, according to Figure 26.  Use the network 

information displayed in the South Cave to set up the IP connections for the control and 

interface computers, web cam, and power controller.  Record IP settings using data sheet 

in Appendix A-1.  Then, follow the power-up procedure in Table 10.  Continually 

monitor current for any increase, terminating the test for any increase more than 10% 

(possible indication of total dose effects).  Using Putty (or other secure shell client) on the 

control computer, connect to the interface computer.  Load the shift register experiment 

into the flash.  Perform a flash dump and checkflash to confirm the flash is properly 

loaded.  Then, execute the shift register program.  After observing proper operation of the 

shift register program, close the North Cave.  Log the experiment number, run and start 

time on a data sheet. 

Set up the beam for 63 MeV protons and start with 5 picoAmps for the desired 

fluence. Irradiate the experiment and log the time.  Observe the program output for SEUs 

and reconfiguration.  Log the time for any data errors and when reconfigurations occur.  

The objective is to observe one SEU approximately every 30 seconds.  If SEU occurrence 

is more frequent, stop the beam and lower the current (cyclotron control).  Start the 

experiment over, logging information on a new data sheet.  Once the beam is set at the 

proper fluence, run the shift register experiment until approximately 100 SEUs are 

observed.  This should yield a dose of 300 rad.  Ensure that the total dose does not exceed 

500 rad for this experiment.  Note: CFTP-1 has already received 191 rad of proton 

irradiation.   

After achieving the desired number of SEUs, stop the beam and log the time.  

Verify the output is saved to a file for follow-on analysis.  Using the SelectMap outputs 

from 30 second updates and reconfigurations, determine the expected SEUs (data vs. 

configuration and location {components or routing}) for the CORDIC experiments. 

3. CORDIC Approximate (CFTP-1) 

When ready to continue, load the CORDIC approximate experiment into the 

flash.  Perform a flash dump and checkflash to confirm the flash is properly loaded.  

Then, execute the CORDIC approximate program.  After observing proper operation of 
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the program, close the North Cave.  Log the experiment number, run and start time on a 

data sheet.  Continually monitor current for any increase, terminating the test for any 

increase more than 10%.   

Set up the beam for the last setting used for the shift register experiment.  Irradiate 

the experiment and log the time.  Observe the program output for SEUs and 

reconfiguration.  Log the time for any data errors and when reconfigurations occur.  If 

SEU occurrence is too frequent, stop the beam and lower the current (cyclotron control).  

Start the experiment over, logging information on a new data sheet.  Run the shift register 

experiment until approximately 100 SEUs are observed.  This should yield a dose of 300 

rad.  Ensure that the total dose does not exceed 1 krad for this experiment.   

After achieving the desired number of SEUs, stop the beam and log the time.  

Verify the output is saved to a file for follow-on analysis.  Note the cumulative dose for 

CFTP-1 to date.  Using the SelectMap outputs from 30 second updates and 

reconfigurations, analyze the observed SEUs (data vs. configuration and location 

{components or routing}). 

4. CORDIC TMR (CFTP-1) 
When ready to continue, load the CORDIC TMR experiment into the flash.  

Perform a flash dump and checkflash to confirm the flash is properly loaded.  Then, 

execute the CORDIC TMR program.  After observing proper operation of the program, 

close the North Cave.  Log the experiment number, run and start time on a data sheet.  

Continually monitor current for any increase, terminating the test for any increase more 

than 10%.   

Set up the beam for the last setting used for the CORDIC approximate 

experiment.  Irradiate the experiment and log the time.  Observe the program output for 

SEUs and reconfiguration.  Log the time for any data errors and when reconfigurations 

occur.  If SEU occurrence is too frequent, stop the beam and lower the current (cyclotron 

control).  Start the experiment over, logging information on a new data sheet.  Run the 

shift register experiment until approximately 100 SEUs are observed.  This should yield a 

dose of 300 rad.  Ensure that the total dose does not exceed 1 krad for this experiment.   
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After achieving the desired number of SEUs, stop the beam and log the time.  

Verify the output is saved to a file for follow-on analysis.  Note the cumulative dose for 

CFTP-1 to date.  Using the SelectMap outputs from 30 second updates and 

reconfigurations, analyze the observed SEUs (data vs. configuration and location 

{components or routing}). 

5. Shift Register (CFTP-2) 
Set-up CFTP-2 on the radiation target testing table.  Connect all cables, except 

power to the CFTP board and stack controller, according to Figure 26.  Verify proper 

network set-up.  Then, follow the power-up procedure in Table 10.  Continually monitor 

current for any increase, terminating the test for any increase more than 10% (possible 

indication of total dose effects).  Using Putty (or other secure shell client) on the control 

computer, connect to the interface computer.  Load the shift register experiment (for 

CFTP-2) into the flash.  Perform a flash dump and checkflash to confirm the flash is 

properly loaded.  Then, execute the shift register program.  After observing proper 

operation of the shift register program, close the North Cave.  Log the experiment 

number, run and start time on a data sheet. 

Set up the beam for the last setting used for the CORDIC TMR experiment.  

Irradiate the experiment and log the time.  Observe the program output for SEUs and 

reconfiguration.  Log the time for any data errors and when reconfigurations occur.  

NOTE:  Because the Virtex II FPGA is more dense (10 times the equivalent gates), it 

may be more sensitive to SEUs.  The objective is to observe one SEU approximately 

every 30 seconds.  If SEU occurrence is more frequent, stop the beam and lower the 

current (cyclotron control).  Start the experiment over, logging information on a new data 

sheet.  Once the beam is set at the proper fluence, run the shift register experiment until 

approximately 100 SEUs are observed.  This should yield a dose of 300 rad.  Ensure that 

the total dose does not exceed 500 rad for this experiment.  Note: This is the first time 

CFTP-2 has been irradiated.   

After achieving the desired number of SEUs, stop the beam and log the time.  

Verify the output is saved to a file for follow-on analysis.  Using the SelectMap outputs 

from 30 second updates and reconfigurations, determine the expected SEUs (data vs. 

configuration and location {components or routing}) for the CORDIC experiments. 
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6. CORDIC Approximate (CFTP-2) 
When ready to continue, load the CORDIC approximate (for CFTP-2) experiment 

into the flash.  Perform a flash dump and checkflash to confirm the flash is properly 

loaded.  Then, execute the CORDIC approximate program.  After observing proper 

operation of the program, close the North Cave.  Log the experiment number, run and 

start time on a data sheet.  Continually monitor current for any increase, terminating the 

test for any increase more than 10%.   

Set up the beam for the last setting used for the shift register experiment.  Irradiate 

the experiment and log the time.  Observe the program output for SEUs and 

reconfiguration.  Log the time for any data errors and when reconfigurations occur.  If 

SEU occurrence is too frequent, stop the beam and lower the current (cyclotron control).  

Start the experiment over, logging information on a new data sheet.  Run the shift register 

experiment until approximately 100 SEUs are observed.  This should yield a dose of 300 

rad.  Ensure that the total dose does not exceed 1 krad for this experiment.   

After achieving the desired number of SEUs, stop the beam and log the time.  

Verify the output is saved to a file for follow-on analysis.  Note the cumulative dose for 

CFTP-1 to date.  Using the SelectMap outputs from 30 second updates and 

reconfigurations, analyze the observed SEUs (data vs. configuration and location 

{components or routing}). 

7. CORDIC TMR (CFTP-2) 
When ready to continue, load the CORDIC TMR (for CFTP-2) experiment into 

the flash.  Perform a flash dump and checkflash to confirm the flash is properly loaded.  

Then, execute the CORDIC TMR program.  After observing proper operation of the 

program, close the North Cave.  Log the experiment number, run and start time on a data 

sheet.  Continually monitor current for any increase, terminating the test for any increase 

more than 10%.   

Set up the beam for the last setting used for the shift register experiment.  Irradiate 

the experiment and log the time.  Observe the program output for SEUs and 

reconfiguration.  Log the time for any data errors and when reconfigurations occur.  If 

SEU occurrence is too frequent, stop the beam and lower the current (cyclotron control).  
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Start the experiment over, logging information on a new data sheet.  Run the shift register 

experiment until approximately 100 SEUs are observed.  This should yield a dose of 300 

rad.  Ensure that the total dose does not exceed 1 krad for this experiment.   

After achieving the desired number of SEUs, stop the beam and log the time.  

Verify the output is saved to a file for follow-on analysis.  Note the cumulative dose for 

CFTP-1 to date.  Using the SelectMap outputs from 30 second updates and 

reconfigurations, analyze the observed SEUs (data vs. configuration and location 

{components or routing}). 

8. PIX (CFTP-2) 
When ready to continue, load the CORDIC TMR (for CFTP-2) experiment into 

the flash.  Perform a flash dump and checkflash to confirm the flash is properly loaded.  

Then, execute the CORDIC TMR program.  After observing proper operation of the 

program, close the North Cave.  Log the experiment number, run and start time on a data 

sheet.  Continually monitor current for any increase, terminating the test for any increase 

more than 10%.   

Set up the beam for the last setting used for the shift register experiment.  Irradiate 

the experiment and log the time.  Observe the program output for SEUs and 

reconfiguration.  Log the time for any data errors and when reconfigurations occur.  If 

SEU occurrence is too frequent, stop the beam and lower the current (cyclotron control).  

Start the experiment over, logging information on a new data sheet.  Run the shift register 

experiment until approximately 100 SEUs are observed.  This should yield a dose of 300 

rad.  Ensure that the total dose does not exceed 1 krad for this experiment.   

After achieving the desired number of SEUs, stop the beam and log the time.  

Verify the output is saved to a file for follow-on analysis.  Note the cumulative dose for 

CFTP-1 to date.  Using the SelectMap outputs from 30 second updates and 

reconfigurations, analyze the observed SEUs (data vs. configuration and location 

{components or routing}). 

9. Additional Testing 

Perform additional tests with new configurations or new programs for above 

configurations as time allows. 
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F. TEST AGENDA 
Table 11 contains the agenda for testing. 

Table 11. Test Agenda 

 
G. SHIPPING INFORMATION: 

Test equipment should be sent to: 

 DR PAUL MARSHALL 
  CARE OF MR CARLOS CASTANEDA 
 CROCKER NUCLEAR LABORATORY, UC DAVIS 
 ONE SHIELDS AVENUE 
 DAVIS CA  95616-8569 
 (530) 752-1460 or (530)-752-4228 

H. TEST SITE PERSONNEL 

1. Test Director/Radiation Engineer 
Paul Marshall (NASA-GSFC)  
 Email: PWMarshall@aol.com 
2. On-Site NPS personnel 
Professor Herschel Loomis 
 Email: hloomis@nps.edu 
Professor Alan Ross 
 Email: aross@nps.edu 
LCDR James Coudeyras 
 Email: jccoudey@nps.edu 
LT Pete Majewicz 
 Email: pmajewic@nps.edu 
Tim Meehan 
 Email: tjmeehan@nps.edu 
Capt Josh Snodgrass 
 Email: jdsnodgr@nps.edu 
Mindy Surratt 
 Email: mlsurrat@nps.edu 

Time Mon 14 Nov Tue 15 Nov Wed 16 Nov Thu 17 Nov 

0800-1600 
Personnel Arrive 
Set-up CFTP-1 in 

North Cave 

Data Analysis 
Revise Test Plan 
Set-up CFTP-2 in 

North Cave 

Data Analysis 
Test Setup Personnel Depart 

1600-2400 

Test Shift Register 
Test CORDIC 
Set-up CFTP-2 

Test Shift Register 

Test CORDIC 
Test PIX 

Additional Testing 

Additional Testing 
Breakdown/Pack-

up 
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3. On-site NRL personnel 
Doug Disabello 
 Email: douglas.disabello@gmail.com 
Kjell Tengesdal 
 Email: tengesdal2@llnl.gov 
 
4. Off-site NPS personnel (phone support, etc.) 
David Rigmaiden 
 Email: drigmaiden@nps.edu 
 
5. Off-site additional personnel (phone support, etc.) 
John Willis 
 Email: john.willis@ftlsys.com 
 
6. UC Davis Test Facility 
Test Area Telephone: 530-754-9289 
 
Facility POC: 
Carlos Castaneda 
 Email: Castaneda@Crocker.UCDavis.Edu 
 
 



67 

APPENDIX B: LAN IP ADDRESS ASSIGNMENTS 

Table 12. IP Assignment Log 

Davis Facility IP Addresses 

Usable Static IP Addresses  169.237.209.150-169.237.209.170 

Subnet Mask 255.255.255.192 

Gateway/Router Address 169.237.209.190 

DNS Addresses 169.237.1.250 
169.237.250.250 

  

Component Assigned IP Address 
(see Usable Static IP Addresses above) 

Control Laptop - 

CFTP-1 Interface Laptop - 

CFTP-2 Interface Laptop - 

Webcam - 

Power Controller - 

Power Laptop - 

Additional Assignments  

1. Mindy Laptop - 

2. - 

3. - 

4. - 

5. - 

6. - 

7. - 

8. - 

9. - 

10. - 
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APPENDIX C: RADIATION TEST DATA SHEET 

Table 13. Experiment Description 

Exp #
1
2
3
4
5
6
7

Start Experiment 8
Start Radiation 9
Stop Radiation 10

11

1 2 4
Data Error

Reconfiguration

6 7 9
Data Error

Reconfiguration

NOTES:

Experiment Description
CFTP-V1 Shift Register (SRL)
CFTP-V1 CORDIC (approx)
CFTP-V1 CORDIC (TMR)
CFTP-V1 SRL+1
CFTP-V1 No SRL/FF only
CFTP-V2 Shift Register (SRL)
CFTP-V2 CORDIC (approx)
CFTP-V2 CORDIC (TMR)

108

CFTP-V2 PIX

CFTP-V2 No SRL/FF only

3

CFTP-V2 SRL+1

5

Experiment Number (see Table):

Run Number:

Experiment Times (Use 24-hour clock)
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APPENDIX D: CODE 

Appendix D contains the VHDL code for the all shift register programs and the 

top level code for X1 and all sub-modules.  MATLAB code used for data analysis is also 

listed in this appendix. 
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A. SHIFT REGISTER MODULE WITH SRL16E MACRO 
------------------------------------------------- 
-- filename: sr_testing.vhd 
-- author: James Coudeyras (2005) 
-- 
-- This file is the basic shift register module 
-- used for X2 which will be used as the initial test 
-- for proton radiation testing at UC-Davis. 
-- 
------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity sr_testing is 
 
    generic ( WIDTH : integer := 2400); -- SR length (2400 for CFTP-1) 
 
    Port  ( clock       : in std_logic; 
        reset           : in std_logic; 
        ce              : in std_logic; 
        din             : in std_logic; 
        dout            : out std_logic; 
        sumdiff         : out std_logic ); 
 
end sr_testing; 
 
architecture sr_sequence of sr_testing is 
    signal reg_a    : std_logic_vector (WIDTH-1 downto 0); 
    signal reg_b    : std_logic_vector (WIDTH-1 downto 0); 
 
begin 
 
process (clock, reset) 
begin 
    if (reset = '1') then 
 
        sumdiff <= '0'; 
        dout <=  '0'; 
 
    elsif (clock'event and clock='1') then 
 
        sumdiff <= '0'; 
 
        if ce='1' then 
            reg_a <= din & reg_a(WIDTH-1 downto 1); 
            reg_b <= din & reg_b(WIDTH-1 downto 1); 
        end if; 
-- LABEL1: 
        for I in 1 to (WIDTH/16) loop 
            if ( (reg_a((I-1)*16) xor reg_b((I-1)*16)) = '1' ) then 
                sumdiff <= '1'; 
            end if; 
        end loop; 
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        dout <= reg_a(0); 
 
    end if; 
 
end process; 
 
end sr_sequence; 
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B. X2 TOP LEVEL CODE 
------------------------------------------------- 
-- filename: cftp_x2_sr.vhd 
-- author: James Coudeyras (2005) 
-- 
-- This file is the top level code for X2 to generate sixteen columns 
-- of the shift register and define the interface signals with X1. 
-- This top level code will be used for X2 as the initial test 
-- for proton radiation testing at UC-Davis. 
-- 
-- This code is the same for all versions of the shift register. 
------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity cftp_x2 is 
    Port ( 
        clock               : in std_logic; 
        T_CE_FROM_X1_i      : in std_logic; 
        T_RESET_FROM_X1_i   : in std_logic; 
        T_BITIN_FROM_X1_i   : in std_logic; 
        T_DOUT_TO_X1_o      : out std_logic; -- verifying LFSR output 
        T_XOR_DOUT_TO_X1_o  : out std_logic; -- comparing douts on X2 
        T_SUMDIFF_TO_X1_o   : out std_logic_vector(15 downto 0)); 
end cftp_x2; 
 
architecture sr_columns of cftp_x2 is 
 
    component sr_testing port ( 
        clock   : in std_logic; 
        reset   : in std_logic; 
        ce      : in std_logic; -- clock enable 
        din     : in std_logic; -- data bit in from LFSR 
        dout    : out std_logic; -- data bit out to counter 
        sumdiff : out std_logic := '0'); -- don't need for X1 
    end component; 
 
--REMOVE FOR SIMULATION 
    component BUFG port (  
        I                   : in std_logic; 
        O                   : out std_logic); 
    end component; 
 
    signal s_clock_X2_i     : std_logic; -- 12.5 MHz system clock w/ 

reset 
    signal s_clock_X2       : std_logic; -- 12.5 MHz system clock w/ 

reset 
    signal s_clock_X2_cnt   : integer range 0 to 16; 
 
    signal s_dout_o         : std_logic_vector(15 downto 0); 
 
begin 
 
-- Divide 25 MHz clock to 12.5 MHz to meet timing constraint 
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    process (clock, T_RESET_FROM_X1_i) begin 
        if (T_RESET_FROM_X1_i = '1') then 
            s_clock_x2_i <= '0'; 
        elsif (clock'event and clock = '1') then 
            if (s_clock_X2_cnt >= 1) then  -- this achieves a divide by 

2 clock period!!! 
                s_clock_X2_i <= not s_clock_X2_i; 
                s_clock_X2_cnt <= 0; 
            else 
                s_clock_X2_cnt <= s_clock_X2_cnt + 1; 
            end if; 
        end if; 
    end process; 
-- FOR SR implementation {END} 
 
 
    gen: for i in 15 downto 0 generate 
        U: entity sr_testing 
-- verify broken line does not cause problems 
         port map (clock => s_clock_X2, reset => T_RESET_FROM_X1_i, ce 

=> T_CE_FROM_X1_i, din => T_BITIN_FROM_X1_i, dout => 
s_dout_o(i), sumdiff => T_SUMDIFF_TO_X1_o(i)); 

    end generate; 
 
    process (s_clock_X2) begin 
        if (clock'event and clock = '1') then 
            T_DOUT_TO_X1_o <= s_dout_o(0); 
            T_XOR_DOUT_TO_X1_o <= (s_dout_o(0) xor s_dout_o(1) xor 

s_dout_o(2) xor s_dout_o(3) xor s_dout_o(4) xor 
s_dout_o(5) xor s_dout_o(6) xor s_dout_o(7) xor 
s_dout_o(8) xor s_dout_o(9) xor s_dout_o(10) xor 
s_dout_o(11) xor s_dout_o(12) xor s_dout_o(13) xor 
s_dout_o(14) xor s_dout_o(15)); -- '0'; 

        end if; 
    end process; 
 
--Clock distribution network for X2 clock 
    s_clock_X2_bufg : BUFG port map ( -- comment out this code only for 

simulations!!! 
        I           => s_clock_X2_i, 
        O           => s_clock_x2  
    ); 
 
end sr_columns; 
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C. X2 SHIFT REGISTER CONSTRAINT FILE (VIRTEX I) 
# Pin assignments for X2 
# 
# double-check all pin assignments??? 
# these numbers derived from a Mar 2004 diagram 
# 
 
# system clock, pin 87 on X2 
NET "clock" LOC = "P87"; 
# NET "CLOCK" PERIOD = 40;  # Why specify the clock period??? 
# NET "s_clock" PERIOD = 80; 
# the line above gave errors during "Translate"??? 
 
# signals to/from X1 
NET "T_BITIN_FROM_X1_i" LOC = "p132";  # X1_X2_AUX<0> 
NET "T_CE_FROM_X1_i" LOC = "p134";  # X1_X2_AUX<1> 
NET "T_RESET_FROM_X1_i" LOC = "p135";  # X1_X2_AUX<2> 
# NET "XXX" LOC = "p136";  # X1_X2_AUX<3> 
# NET "XXX" LOC = "p138";  # X1_X2_AUX<4> 
# NET "XXX" LOC = "p139";  # X1_X2_AUX<5> 
# NET "XXX" LOC = "p141";  # X1_X2_AUX<6> 
# NET "XXX" LOC = "p144";  # X1_X2_AUX<7> 
# NET "XXX" LOC = "p146";  # X1_X2_AUX<8> 
# NET "XXX" LOC = "p147";  # X1_X2_AUX<9> 
NET "T_SUMDIFF_TO_X1_o<0>" LOC = "p153";  # X1_X2_AUX<10> 
NET "T_DOUT_TO_X1_o" LOC = "p154";  # X1_X2_AUX<11> 
NET "T_SUMDIFF_TO_X1_o<1>" LOC = "p159";  # X1_X2_AUX<12> 
NET "T_XOR_DOUT_TO_X1_o" LOC = "p160";  # X1_X2_AUX<13> 
NET "T_SUMDIFF_TO_X1_o<2>" LOC = "p161";  # X1_X2_AUX<14> 
#NET "T_DOUT_TO_X1_o<2>" LOC = "p177";  # X1_X2_AUX<15> 
NET "T_SUMDIFF_TO_X1_o<3>" LOC = "p178";  # X1_X2_AUX<16> 
#NET "T_DOUT_TO_X1_o<3>" LOC = "p179";  # X1_X2_AUX<17> 
NET "T_SUMDIFF_TO_X1_o<4>" LOC = "p181";  # X1_X2_AUX<18> 
#NET "T_DOUT_TO_X1_o<4>" LOC = "p182";  # X1_X2_AUX<19> 
NET "T_SUMDIFF_TO_X1_o<5>" LOC = "p183";  # X1_X2_AUX<20> 
#NET "T_DOUT_TO_X1_o<5>" LOC = "p184";  # X1_X2_AUX<21> 
NET "T_SUMDIFF_TO_X1_o<6>" LOC = "p185";  # X1_X2_AUX<22> 
#NET "T_DOUT_TO_X1_o<6>" LOC = "p188";  # X1_X2_AUX<23> 
NET "T_SUMDIFF_TO_X1_o<7>" LOC = "p189";  # X1_X2_AUX<24> 
#NET "T_DOUT_TO_X1_o<7>" LOC = "p190";  # X1_X2_AUX<25> 
NET "T_SUMDIFF_TO_X1_o<8>" LOC = "p192";  # X1_X2_AUX<26> 
#NET "T_DOUT_TO_X1_o<8>" LOC = "p193";  # X1_X2_AUX<27> 
NET "T_SUMDIFF_TO_X1_o<9>" LOC = "p194";  # X1_X2_AUX<28> 
#NET "T_DOUT_TO_X1_o<9>" LOC = "p195";  # X1_X2_AUX<29> 
NET "T_SUMDIFF_TO_X1_o<10>" LOC = "p196";  # X1_X2_AUX<30> 
#NET "T_DOUT_TO_X1_o<10>" LOC = "p197";  # X1_X2_AUX<31> 
NET "T_SUMDIFF_TO_X1_o<11>" LOC = "p198";  # X1_X2_AUX<32> 
#NET "T_DOUT_TO_X1_o<11>" LOC = "p204";  # X1_X2_AUX<33> 
NET "T_SUMDIFF_TO_X1_o<12>" LOC = "p205";  # X1_X2_AUX<34> 
#NET "T_DOUT_TO_X1_o<12>" LOC = "p206";  # X1_X2_AUX<35> 
NET "T_SUMDIFF_TO_X1_o<13>" LOC = "p207";  # X1_X2_AUX<36> 
#NET "T_DOUT_TO_X1_o<13>" LOC = "p208";  # X1_X2_AUX<37> 
NET "T_SUMDIFF_TO_X1_o<14>" LOC = "p209";  # X1_X2_AUX<38> 
#NET "T_DOUT_TO_X1_o<14>" LOC = "p211";  # X1_X2_AUX<39> 
NET "T_SUMDIFF_TO_X1_o<15>" LOC = "p212";  # X1_X2_AUX<40> 
#NET "T_DOUT_TO_X1_o<15>" LOC = "p213";  # X1_X2_AUX<41> 
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# NET "XXX" LOC = "p216";  # X1_X2_AUX<42> 
# NET "XXX" LOC = "p217";  # X1_X2_AUX<43> 
# NET "XXX" LOC = "p218";  # X1_X2_AUX<44> 
 
# Start of Constraints extracted by Floorplanner from the Design 
INST "U15_*" AREA_GROUP = "cftp_x2_sr_15" ; 
AREA_GROUP "cftp_x2_sr_15" RANGE = CLB_R1C1:CLB_R48C4 ; 
INST "U14_*" AREA_GROUP = "cftp_x2_sr_14" ; 
AREA_GROUP "cftp_x2_sr_14" RANGE = CLB_R1C6:CLB_R48C9 ; 
INST "U13_*" AREA_GROUP = "cftp_x2_sr_13" ; 
AREA_GROUP "cftp_x2_sr_13" RANGE = CLB_R1C10:CLB_R48C13 ; 
INST "U12_*" AREA_GROUP = "cftp_x2_sr_12" ; 
AREA_GROUP "cftp_x2_sr_12" RANGE = CLB_R1C15:CLB_R48C18 ; 
INST "U11_*" AREA_GROUP = "cftp_x2_sr_11" ; 
AREA_GROUP "cftp_x2_sr_11" RANGE = CLB_R1C19:CLB_R48C22 ; 
INST "U10_*" AREA_GROUP = "cftp_x2_sr_10" ; 
AREA_GROUP "cftp_x2_sr_10" RANGE = CLB_R1C24:CLB_R48C27 ; 
INST "U9_*" AREA_GROUP = "cftp_x2_sr_9" ; 
AREA_GROUP "cftp_x2_sr_9" RANGE = CLB_R1C28:CLB_R48C31 ; 
INST "U8_*" AREA_GROUP = "cftp_x2_sr_8" ; 
AREA_GROUP "cftp_x2_sr_8" RANGE = CLB_R1C33:CLB_R48C36 ; 
INST "U7_*" AREA_GROUP = "cftp_x2_sr_7" ; 
AREA_GROUP "cftp_x2_sr_7" RANGE = CLB_R1C37:CLB_R48C40 ; 
INST "U6_*" AREA_GROUP = "cftp_x2_sr_6" ; 
AREA_GROUP "cftp_x2_sr_6" RANGE = CLB_R1C42:CLB_R48C45 ; 
INST "U5_*" AREA_GROUP = "cftp_x2_sr_5" ; 
AREA_GROUP "cftp_x2_sr_5" RANGE = CLB_R1C46:CLB_R48C49 ; 
INST "U4_*" AREA_GROUP = "cftp_x2_sr_4" ; 
AREA_GROUP "cftp_x2_sr_4" RANGE = CLB_R1C51:CLB_R48C54 ; 
INST "U3_*" AREA_GROUP = "cftp_x2_sr_3" ; 
AREA_GROUP "cftp_x2_sr_3" RANGE = CLB_R1C55:CLB_R48C58 ; 
INST "U2_*" AREA_GROUP = "cftp_x2_sr_2" ; 
AREA_GROUP "cftp_x2_sr_2" RANGE = CLB_R1C60:CLB_R48C63 ; 
INST "U1_*" AREA_GROUP = "cftp_x2_sr_1" ; 
AREA_GROUP "cftp_x2_sr_1" RANGE = CLB_R1C64:CLB_R48C67 ; 
INST "U0_*" AREA_GROUP = "cftp_x2_sr_0" ; 
AREA_GROUP "cftp_x2_sr_0" RANGE = CLB_R1C69:CLB_R48C72 ; 
# AREA_GROUP "sr_sample_2" RANGE = RAMB4_R0C0:RAMB4_R4C0 ;  # No RAMB4 

used here!!! 
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D. X2 SHIFT REGISTER CONSTRAINT FILE (VIRTEX II) 
# Pin assignments for X2 
# 
# double-check all pin assignments??? 
# these numbers derived from a Mar 2004 diagram 
# 
 
# system clock, pin 87 on X2 
NET "clock" LOC = "P87"; 
# NET "CLOCK" PERIOD = 40;  # Why specify the clock period??? 
# NET "s_clock" PERIOD = 80; 
# the line above gave errors during "Translate"??? 
 
# signals to/from X1 
NET "T_BITIN_FROM_X1_i" LOC = "p132";  # X1_X2_AUX<0> 
NET "T_CE_FROM_X1_i" LOC = "p134";  # X1_X2_AUX<1> 
NET "T_RESET_FROM_X1_i" LOC = "p135";  # X1_X2_AUX<2> 
# NET "XXX" LOC = "p136";  # X1_X2_AUX<3> 
# NET "XXX" LOC = "p138";  # X1_X2_AUX<4> 
# NET "XXX" LOC = "p139";  # X1_X2_AUX<5> 
# NET "XXX" LOC = "p141";  # X1_X2_AUX<6> 
# NET "XXX" LOC = "p144";  # X1_X2_AUX<7> 
# NET "XXX" LOC = "p146";  # X1_X2_AUX<8> 
# NET "XXX" LOC = "p147";  # X1_X2_AUX<9> 
NET "T_SUMDIFF_TO_X1_o<0>" LOC = "p153";  # X1_X2_AUX<10> 
NET "T_DOUT_TO_X1_o" LOC = "p154";  # X1_X2_AUX<11> 
NET "T_SUMDIFF_TO_X1_o<1>" LOC = "p159";  # X1_X2_AUX<12> 
NET "T_XOR_DOUT_TO_X1_o" LOC = "p160";  # X1_X2_AUX<13> 
NET "T_SUMDIFF_TO_X1_o<2>" LOC = "p161";  # X1_X2_AUX<14> 
#NET "T_DOUT_TO_X1_o<2>" LOC = "p177";  # X1_X2_AUX<15> 
NET "T_SUMDIFF_TO_X1_o<3>" LOC = "p178";  # X1_X2_AUX<16> 
#NET "T_DOUT_TO_X1_o<3>" LOC = "p179";  # X1_X2_AUX<17> 
NET "T_SUMDIFF_TO_X1_o<4>" LOC = "p181";  # X1_X2_AUX<18> 
#NET "T_DOUT_TO_X1_o<4>" LOC = "p182";  # X1_X2_AUX<19> 
NET "T_SUMDIFF_TO_X1_o<5>" LOC = "p183";  # X1_X2_AUX<20> 
#NET "T_DOUT_TO_X1_o<5>" LOC = "p184";  # X1_X2_AUX<21> 
NET "T_SUMDIFF_TO_X1_o<6>" LOC = "p185";  # X1_X2_AUX<22> 
#NET "T_DOUT_TO_X1_o<6>" LOC = "p188";  # X1_X2_AUX<23> 
NET "T_SUMDIFF_TO_X1_o<7>" LOC = "p189";  # X1_X2_AUX<24> 
#NET "T_DOUT_TO_X1_o<7>" LOC = "p190";  # X1_X2_AUX<25> 
NET "T_SUMDIFF_TO_X1_o<8>" LOC = "p192";  # X1_X2_AUX<26> 
#NET "T_DOUT_TO_X1_o<8>" LOC = "p193";  # X1_X2_AUX<27> 
NET "T_SUMDIFF_TO_X1_o<9>" LOC = "p194";  # X1_X2_AUX<28> 
#NET "T_DOUT_TO_X1_o<9>" LOC = "p195";  # X1_X2_AUX<29> 
NET "T_SUMDIFF_TO_X1_o<10>" LOC = "p196";  # X1_X2_AUX<30> 
#NET "T_DOUT_TO_X1_o<10>" LOC = "p197";  # X1_X2_AUX<31> 
NET "T_SUMDIFF_TO_X1_o<11>" LOC = "p198";  # X1_X2_AUX<32> 
#NET "T_DOUT_TO_X1_o<11>" LOC = "p204";  # X1_X2_AUX<33> 
NET "T_SUMDIFF_TO_X1_o<12>" LOC = "p205";  # X1_X2_AUX<34> 
#NET "T_DOUT_TO_X1_o<12>" LOC = "p206";  # X1_X2_AUX<35> 
NET "T_SUMDIFF_TO_X1_o<13>" LOC = "p207";  # X1_X2_AUX<36> 
#NET "T_DOUT_TO_X1_o<13>" LOC = "p208";  # X1_X2_AUX<37> 
NET "T_SUMDIFF_TO_X1_o<14>" LOC = "p209";  # X1_X2_AUX<38> 
#NET "T_DOUT_TO_X1_o<14>" LOC = "p211";  # X1_X2_AUX<39> 
NET "T_SUMDIFF_TO_X1_o<15>" LOC = "p212";  # X1_X2_AUX<40> 
#NET "T_DOUT_TO_X1_o<15>" LOC = "p213";  # X1_X2_AUX<41> 
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# NET "XXX" LOC = "p216";  # X1_X2_AUX<42> 
# NET "XXX" LOC = "p217";  # X1_X2_AUX<43> 
# NET "XXX" LOC = "p218";  # X1_X2_AUX<44> 
 
# Start of Constraints extracted by Floorplanner from the Design 
INST "U15_*" AREA_GROUP = "cftp_x2_sr_15" ; 
AREA_GROUP "cftp_x2_sr_15" RANGE = CLB_R1C1:CLB_R48C4 ; 
INST "U14_*" AREA_GROUP = "cftp_x2_sr_14" ; 
AREA_GROUP "cftp_x2_sr_14" RANGE = CLB_R1C6:CLB_R48C9 ; 
INST "U13_*" AREA_GROUP = "cftp_x2_sr_13" ; 
AREA_GROUP "cftp_x2_sr_13" RANGE = CLB_R1C10:CLB_R48C13 ; 
INST "U12_*" AREA_GROUP = "cftp_x2_sr_12" ; 
AREA_GROUP "cftp_x2_sr_12" RANGE = CLB_R1C15:CLB_R48C18 ; 
INST "U11_*" AREA_GROUP = "cftp_x2_sr_11" ; 
AREA_GROUP "cftp_x2_sr_11" RANGE = CLB_R1C19:CLB_R48C22 ; 
INST "U10_*" AREA_GROUP = "cftp_x2_sr_10" ; 
AREA_GROUP "cftp_x2_sr_10" RANGE = CLB_R1C24:CLB_R48C27 ; 
INST "U9_*" AREA_GROUP = "cftp_x2_sr_9" ; 
AREA_GROUP "cftp_x2_sr_9" RANGE = CLB_R1C28:CLB_R48C31 ; 
INST "U8_*" AREA_GROUP = "cftp_x2_sr_8" ; 
AREA_GROUP "cftp_x2_sr_8" RANGE = CLB_R1C33:CLB_R48C36 ; 
INST "U7_*" AREA_GROUP = "cftp_x2_sr_7" ; 
AREA_GROUP "cftp_x2_sr_7" RANGE = CLB_R1C37:CLB_R48C40 ; 
INST "U6_*" AREA_GROUP = "cftp_x2_sr_6" ; 
AREA_GROUP "cftp_x2_sr_6" RANGE = CLB_R1C42:CLB_R48C45 ; 
INST "U5_*" AREA_GROUP = "cftp_x2_sr_5" ; 
AREA_GROUP "cftp_x2_sr_5" RANGE = CLB_R1C46:CLB_R48C49 ; 
INST "U4_*" AREA_GROUP = "cftp_x2_sr_4" ; 
AREA_GROUP "cftp_x2_sr_4" RANGE = CLB_R1C51:CLB_R48C54 ; 
INST "U3_*" AREA_GROUP = "cftp_x2_sr_3" ; 
AREA_GROUP "cftp_x2_sr_3" RANGE = CLB_R1C55:CLB_R48C58 ; 
INST "U2_*" AREA_GROUP = "cftp_x2_sr_2" ; 
AREA_GROUP "cftp_x2_sr_2" RANGE = CLB_R1C60:CLB_R48C63 ; 
INST "U1_*" AREA_GROUP = "cftp_x2_sr_1" ; 
AREA_GROUP "cftp_x2_sr_1" RANGE = CLB_R1C64:CLB_R48C67 ; 
INST "U0_*" AREA_GROUP = "cftp_x2_sr_0" ; 
AREA_GROUP "cftp_x2_sr_0" RANGE = CLB_R1C69:CLB_R48C72 ; 
# AREA_GROUP "sr_sample_2" RANGE = RAMB4_R0C0:RAMB4_R4C0 ;  # No RAMB4 

used here!!! 
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E. X1 SELECTMAP CONFIGURATION CODE 
(From [17]) 

----------------------------------------------------------------------- 
-- selectmap_config.vhd                                              -- 
-- Author: Mindy Surratt, 2005                                       -- 
-- Research Associate, Naval Postgraduate School, Monterey, CA       -- 
--                                                                   -- 
-- Code to perform a selectmap full configuration on the V1          -- 
-- experiment FPGA                                                   -- 
----------------------------------------------------------------------- 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
use IEEE.std_logic_unsigned.all; 
use IEEE.std_logic_arith.all; 
 
entity selectmap_config is 
 
    port ( 
 
        T_CLOCK_i           : in std_logic; 
        RESET_i             : in std_logic; 
 
        T_SELECTMAP_INIT_o  : out std_logic; 
        T_SELECTMAP_WRITE_o : out std_logic; 
        T_SELECTMAP_CS_o    : out std_logic; 
        T_SELECTMAP_DATA_o  : out std_logic_vector(7 downto 0); 
 
        SM_CONFIG_RQST_i    : in std_logic; 
        SM_CONFIG_STATUS_o  : out std_logic; 
                   
        T_FLASH_DATA_i      : in std_logic_vector(15 downto 0); 
        T_FLASH_ADDRESS_o   : out std_logic_vector(21 downto 0);  
 
        PC104_WR_RDY_i      : in std_logic; 
        PC104_WR_EN_o       : out std_logic; 
        DATA_o              : out std_logic_vector(7 downto 0) 
 
    ); 
 
end selectmap_config; 
 
architecture rtl of selectmap_config is 
 
CONSTANT BIN_LENGTH             : integer := 450996; --SIMULATION 20; 
CONSTANT CONFIG_DELAY           : integer := 4000; --SIMULATION 10; 
CONSTANT ABORT_SETUP_LENGTH     : integer := 5;   
CONSTANT ABORT_LENGTH           : integer := 5;  
CONSTANT ABORT_RELEASE_LENGTH   : integer := 5; 
CONSTANT CONFIG_LENGTH          : integer := CONFIG_DELAY + BIN_LENGTH 

+  
                                                ABORT_SETUP_LENGTH +  
                                                ABORT_LENGTH +  
                                                ABORT_RELEASE_LENGTH; 
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signal count_config         : integer range 0 to CONFIG_LENGTH ; 
signal byte_count           : integer range 0 to 100; 
signal byte1                : std_logic; 
signal byte2                : std_logic; 
signal s_flash_address_o    : std_logic_vector(20 downto 0); 
 
begin 
 
-- only one flash device on CFTP-1, so only 21 addr lines (addr(21) = 

'0') 
T_FLASH_ADDRESS_o(21) <= '0'; 
T_FLASH_ADDRESS_o(20 downto 0) <= s_flash_address_o; 
 
-- Selectmap Configuration Process 
process(T_CLOCK_i, RESET_i) 
begin 
 if (RESET_i = '1') then 
 
        s_flash_address_o <= "000000000000000000000";  
 
        SM_CONFIG_STATUS_o <= '0'; 
 
        T_SELECTMAP_DATA_o <= x"00"; 
 
  T_SELECTMAP_INIT_o <= '0'; 
  T_SELECTMAP_WRITE_o <= '1'; 
  T_SELECTMAP_CS_o <= '1'; 
 
        byte1 <= '0'; 
        byte2 <= '0'; 
        PC104_WR_EN_o <= '0'; 
 
  count_config <= CONFIG_LENGTH; 
 
 elsif(T_CLOCK_i'event and T_CLOCK_i = '1') then 
 
        T_SELECTMAP_INIT_o <= '1'; 
        T_SELECTMAP_CS_o <= '1'; 
        T_SELECTMAP_WRITE_o <= '1'; 
        PC104_WR_EN_o <= '0'; 
 
        if ( count_config = 0 ) then 
            if (PC104_WR_RDY_i = '1') then 
                -- Write 'S' to PC104 
                if (byte1 = '0') then 
                    DATA_o <= x"53";  
                    PC104_WR_EN_o <= '1';   
                    byte1 <= '1'; 
                -- Write 'C' to PC104 
                else  
                    DATA_o <= x"43";  
                    PC104_WR_EN_o <= '1';   
                    byte2 <= '1'; 
                end if; 
            end if; 
            if (byte2 = '1') then 
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                count_config <= 1; 
                byte1 <= '0'; 
                byte2 <= '0'; 
            end if; 
 
        -- give it some time 
        elsif (count_config < CONFIG_DELAY ) then 
            count_config <= count_config + 1; 
 
        -- assert write and CS  
        elsif (count_config < CONFIG_DELAY + ABORT_SETUP_LENGTH) then 
            count_config <= count_config + 1; 
            T_SELECTMAP_CS_o <= '0'; 
            T_SELECTMAP_WRITE_o <= '0'; 
 
        -- deassert write while CS is asserted (pulls an abort) 
        elsif (count_config < CONFIG_DELAY + ABORT_SETUP_LENGTH + 

ABORT_LENGTH) then 
            count_config <= count_config + 1; 
            T_SELECTMAP_CS_o <= '0'; 
            T_SELECTMAP_WRITE_o <= '1'; 
 
        -- Just deassert WRITE and CS to release the abort (for Virtex 

1) 
        -- (Default values of WRITE and CS are '1', see above) 
        elsif (count_config < CONFIG_DELAY + ABORT_SETUP_LENGTH +  
                                ABORT_LENGTH + ABORT_RELEASE_LENGTH) 

then 
            count_config <= count_config + 1; 
 
        -- read data from flash and write to X2s selectmap interface 
        elsif (count_config < CONFIG_LENGTH) then 
            byte_count <= byte_count + 1; 
 
            --T_SELECTMAP_DATA_io0 is the MSB (except I swapped values 

in UCF 
            --so in this instance D7 is MSB...) 
            -- disabled bit flipping in promgen (default is to flip 

bits in  
            -- each byte), so T_SELECTMAP_DATA_o<=t_flash_data instead 

of  
            -- having to reverse the bits (7=0, 6=1, etc) 
 
            -- takes some time to read from the flash (possibly less 

than  
            -- I'm allowing for... 
            if (byte_count = 6) then 
                T_SELECTMAP_CS_o <= '0'; 
                T_SELECTMAP_WRITE_o <= '0'; 
                T_SELECTMAP_DATA_o <= T_FLASH_DATA_i(7 downto 0); 
                count_config <= count_config + 1; 
                byte_count <= 0; 
                s_flash_address_o <= s_flash_address_o + 1; 
            end if; 
 
        -- sit here until we get a config request from the top level 
        elsif (count_config = CONFIG_LENGTH ) then 
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            count_config <= CONFIG_LENGTH; 
            SM_CONFIG_STATUS_o <= '0'; 
            --reset flash address  
            s_flash_address_o <= "000000000000000000000"; 
            if (SM_CONFIG_RQST_i = '1') then 
                count_config <= 0; 
               SM_CONFIG_STATUS_o <= '1'; 
            end if; 
 
        end if;  
 
 
    end if; 
 
end process; 
 
end rtl; 
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F. X1 SELECTMAP READBACK CODE 
----------------------------------------------------------------------- 
-- selectmap_readback.vhd                                            -- 
-- Author: Mindy Surratt, 2005                                       -- 
-- Research Associate, Naval Postgraduate School, Monterey, CA       -- 
--                                                                   -- 
-- Code to perform a selectmap readback on the experiment FPGA,      -- 
-- compare the readback data with the configuration file and mask    -- 
-- file stored in the Flash memory, and output any configuration     -- 
-- errors to the PC/104                                              -- 
----------------------------------------------------------------------- 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
use IEEE.std_logic_unsigned.all; 
use IEEE.std_logic_arith.all; 
 
entity selectmap_readback is 
    port ( 
 
        T_CLOCK_i           : in std_logic; 
        CLOCK_i             : in std_logic; 
        CLOCK_NOBUFG_i      : in std_logic; 
        RESET_i             : in std_logic; 
     
        T_CCLK_o            : out std_logic; 
        T_SELECTMAP_INIT_o  : out std_logic; 
        T_SELECTMAP_WRITE_o : out std_logic; 
        T_SELECTMAP_CS_o    : out std_logic; 
        T_SELECTMAP_DATA_o  : out std_logic_vector(7 downto 0); 
        T_SELECTMAP_DATA_i  : in std_logic_vector(7 downto 0); 
 
        SM_RB_RQST_i        : in std_logic; 
        SM_RB_STATUS_o      : out std_logic; 
         
        T_FLASH_DATA_i      : in std_logic_vector(15 downto 0); 
        T_FLASH_ADDRESS_o   : out std_logic_vector(21 downto 0); 
 
        PC104_WR_RDY_i      : in std_logic; 
        PC104_WR_EN_o       : out std_logic; 
        DATA_o              : out std_logic_vector(7 downto 0) 
 
    ); 
end selectmap_readback; 
 
architecture rtl of selectmap_readback is 
 
-- Constants 
 
    CONSTANT READBACK_COMMAND_LENGTH    : integer := 36; 
    -- CLB_LENGTH refers to CLBs, IOBs, and BRAMIs. We do not read back 

BRAMs 
    CONSTANT CLB_LENGTH                 : integer := 435240; --

SIMULATION 130; 
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    CONSTANT READBACK_DELAY             : integer := 4000; --SIMULATION 
10; 

    CONSTANT READBACK_INIT1_DELAY       : integer := 1; 
    CONSTANT READBACK_INIT2_DELAY       : integer := 1; -- DO NOT 

CHANGE THIS! 
    -- Number of clocks needed to set up readback (before we actually 

start 
    -- getting data) 
    CONSTANT READBACK_OFFSET            : integer := 

READBACK_COMMAND_LENGTH + 
                                                        READBACK_DELAY 

+  
                                                        

READBACK_INIT1_DELAY +  
                                                        

READBACK_INIT2_DELAY; 
    CONSTANT READBACK_LENGTH            : integer := CLB_LENGTH + 
                                                        

READBACK_OFFSET; 
 
    signal s_clock_i        : std_logic; 
 
-- Flash compare/report signals 
 
    type   my_state is (sleep_st,read_flash_st,wr_hdr_1_st,wr_hdr_2_st,  
                        read_sm_st, wait_st, compare_st, 

write_pc104_st); 
    type   error_vector is array(15 downto 0) of std_logic_vector(7 

downto 0); 
 
    signal report_error_state       : my_state; 
    signal error_word               : error_vector; 
 
    signal flash_data_reg           : std_logic_vector(15 downto 0); 
    signal s_flash_address_o        : std_logic_vector(20 downto 0); 
    signal error_count              : integer range 0 to 1024; 
    signal error_location           : std_logic_vector (23 downto 0); 
    signal error_location_readback  : std_logic_vector (23 downto 0); 
    signal wr_cnt                   : integer range 0 to 32; 
 
 
-- Selectmap Readback signals 
 
    type   readback_mem_type is array(READBACK_COMMAND_LENGTH-1 downto 

0)  
                                of std_logic_vector(7 downto 0); 
 
    signal readback_command     : readback_mem_type; 
    signal count_readback       : integer range 0 to 1024000; 
    signal strt_rb              : std_logic; 
    signal s_selectmap_data_d   : std_logic_vector(7 downto 0); 
    signal s_selectmap_data_i   : std_logic_vector(7 downto 0); 
    signal reading_sm_data      : std_logic; 
    signal reading_sm_data_d    : std_logic; 
    signal readback_location    : integer range 0 to 1024000; 
 
    signal selectmap_read_data  : std_logic_vector(7 downto 0); 
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begin  
 
    -- Clocking CCLK only works if we use a signal that is not on the  
    -- clock network 
    process (T_CLOCK_i) begin 
        if (T_CLOCK_i'event and T_CLOCK_i = '1') then 
            s_clock_i <= not s_clock_i; 
        end if; 
    end process; 
 
 
    -- Command sequence that initializes a selectmap readback 
    readback_command(0)(7 downto 0) <= x"FF"; --MSB dummy word  
    readback_command(1)(7 downto 0) <= x"FF"; 
    readback_command(2)(7 downto 0) <= x"FF"; 
    readback_command(3)(7 downto 0) <= x"FF"; 
    readback_command(4)(7 downto 0) <= x"AA"; --MSB synchronization 

word 
    readback_command(5)(7 downto 0) <= x"99"; 
    readback_command(6)(7 downto 0) <= x"55"; 
    readback_command(7)(7 downto 0) <= x"66"; 
    readback_command(8)(7 downto 0) <= x"30"; --MSB write 1 word to FAR 

reg 
    readback_command(9)(7 downto 0) <= x"00"; 
    readback_command(10)(7 downto 0) <= x"20"; 
    readback_command(11)(7 downto 0) <= x"01"; 
    readback_command(12)(7 downto 0) <= x"00"; --MSB FAR address 
    readback_command(13)(7 downto 0) <= x"00"; 
    readback_command(14)(7 downto 0) <= x"00"; 
    readback_command(15)(7 downto 0) <= x"00"; 
    readback_command(16)(7 downto 0) <= x"30"; --MSB write 1 word to 

CMD reg 
    readback_command(17)(7 downto 0) <= x"00"; 
    readback_command(18)(7 downto 0) <= x"80"; 
    readback_command(19)(7 downto 0) <= x"01"; 
    readback_command(20)(7 downto 0) <= x"00"; --MSB RCFG command 
    readback_command(21)(7 downto 0) <= x"00"; 
    readback_command(22)(7 downto 0) <= x"00"; 
    readback_command(23)(7 downto 0) <= x"04"; 
    readback_command(24)(7 downto 0) <= x"28"; --MSB type 2 header 
    readback_command(25)(7 downto 0) <= x"00"; 
    readback_command(26)(7 downto 0) <= x"60"; 
    readback_command(27)(7 downto 0) <= x"00"; 
    readback_command(28)(7 downto 0) <= x"48"; --type 2 read from 

active reg 
    readback_command(29)(7 downto 0) <= x"01"; --(FDRO) 0x1A90A 32 bit 

words 
    readback_command(30)(7 downto 0) <= x"A9"; -- (READBACK_LENGTH/4) 
    readback_command(31)(7 downto 0) <= x"0A"; 
    readback_command(32)(7 downto 0) <= x"00"; --MSB pad word 
    readback_command(33)(7 downto 0) <= x"00"; 
    readback_command(34)(7 downto 0) <= x"00"; 
    readback_command(35)(7 downto 0) <= x"00"; 
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    -- grabs selectmap data on the next read_sm_st,  
    -- the first byte read back will be junk (no data yet) 
    T_CCLK_o            <= '1' when reading_sm_data = '1'  
                                    and report_error_state /= 

read_sm_st  
                               else s_clock_i; 
    s_selectmap_data_i  <= T_SELECTMAP_DATA_i; 
 
    -- only one flash device on CFTP-1, so only 21 addr lines (addr(21) 

= '0') 
    T_FLASH_ADDRESS_o(21) <= '0'; 
    T_FLASH_ADDRESS_o(20 downto 0) <= s_flash_address_o; 
     
    readback_location <= 0  when count_readback < READBACK_OFFSET  
                            else (count_readback - READBACK_OFFSET); 
     
    process(CLOCK_i,RESET_i) 
    begin 
        if (RESET_i = '1') then 
     
            report_error_state <= sleep_st; 
            error_count <= 0; 
            wr_cnt <= 0; 
     
            PC104_WR_EN_o <= '0'; 
            DATA_o <= x"31"; 
     
        elsif (CLOCK_i'event and CLOCK_i = '1') then 
     
            PC104_WR_EN_o <= '0'; 
            report_error_state <= report_error_state; 
         
            case report_error_state is 
     
                when sleep_st => 
     
                    -- set flash address to just after the selectmap 
                    -- configuration commands in the bin file 
                    s_flash_address_o <= "000000000000001001000"; 
                    -- wait until we start actually reading SM data 
                    -- then start the readback reports 
                    if (reading_sm_data = '1') then  
                        report_error_state <= wr_hdr_1_st; 
                    end if; 
     
                when wr_hdr_1_st => 
 
                    -- Write 'S' to PC104 
                    if (PC104_WR_RDY_i='1' ) then 
                        DATA_o <= x"53"; --S 
                        PC104_WR_EN_o <= '1';   
                        report_error_state <= wr_hdr_2_st; 
                    end if; 
     
                when wr_hdr_2_st => 
 
                    -- Write 'M' to PC104 
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                    if (PC104_WR_RDY_i='1' ) then 
                        DATA_o <= x"4D"; --M 
                        PC104_WR_EN_o <= '1';   
                        report_error_state <= read_flash_st;  
                    end if; 
     
                when read_flash_st => 
     
                    report_error_state <= read_sm_st; 
     
                    -- Go idle if we are done reading back 
                    if (reading_sm_data = '0') then 
                        report_error_state <= sleep_st; 
                    end if; 
     
                when read_sm_st => 
     
                    -- latch the selectmap data from the last read, 
                    -- and trigger CCLK to get the next byte (see 

T_CCLK_o 
                    -- assignment above) 
                    selectmap_read_data <= s_selectmap_data_i;  
                    report_error_state <= wait_st; 
     
                when wait_st => 
     
                    -- Skip first junk byte (see CCLK above), 1 dummy 

word,  
                    -- and one pad frame (120 bytes) 
                    if (readback_location < 125) then 
                        report_error_state <= read_sm_st; 
                    else 
                        report_error_state <= compare_st; 
                    end if; 
     
                when compare_st => 
     
                    -- latch flash data for possible report to PC104 
                    flash_data_reg <= T_FLASH_DATA_i; 
                    -- increment the flash address for the next read 
                    s_flash_address_o <= s_flash_address_o + 1; 
     
                    -- Compare read back selectmap data, configuration 

data 
                    -- stored in the flash, and mask data stored in the 

flash. 
                    -- If there is a mismatch, print a report to 

PC/104.  
                    -- Otherwise, read the next byte 
                    if ( ( (T_FLASH_DATA_i(7 downto 0) xor 

selectmap_read_data)  
                        and not T_FLASH_DATA_i(15 downto 8) ) /= x"00" 

) then 
                        report_error_state <= write_pc104_st; 
                    else 
                        report_error_state <= read_flash_st; 
                    end if; 
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                when write_pc104_st => 
     
                    -- print out SM report 
                    -- error_word() defined below 
                    if (wr_cnt < 7 and PC104_WR_RDY_i = '1' ) then 
                        DATA_o <= error_word(wr_cnt); 
                        PC104_WR_EN_o <= '1'; 
                        wr_cnt <= wr_cnt + 1; 
                    -- read next byte from selectmap when done 
                    elsif (wr_cnt = 7) then 
                        report_error_state <= read_flash_st; 
                        wr_cnt <= 0; 
                    end if; 
     
                when others => report_error_state <= sleep_st; 
            end case;             
        end if; 
     
    end process; 
     
    error_location <= "000" & (s_flash_address_o - 1) ; 
    error_location_readback <=  
            std_logic_vector(to_unsigned(readback_location,24)); 
     
    -- SMRB error report, error location is byte location within 
    -- bin file 
    error_word(0) <= x"00"; 
    error_word(1) <= selectmap_read_data ; 
    error_word(2) <= error_location(23 downto 16); 
    error_word(3) <= error_location(15 downto 8); 
    error_word(4) <= error_location(7 downto 0);    
    error_word(5) <= flash_data_reg(7 downto 0); 
    error_word(6) <= flash_data_reg(15 downto 8); 
     
     
    -- Process to perform Selectmap Readback 
    process(CLOCK_i,RESET_i) 
    begin 
        if (RESET_i = '1') then 
     
            T_SELECTMAP_INIT_o <= '1'; 
            T_SELECTMAP_WRITE_o <= '1'; 
            T_SELECTMAP_CS_o <= '1'; 
     
            count_readback <= READBACK_LENGTH; 
            SM_RB_STATUS_o <= '0'; 
            reading_sm_data <= '0'; 
            reading_sm_data_d <= '0'; 
     
            s_selectmap_data_d <= x"FF"; 
     
            strt_rb <= '0'; 
     
            T_SELECTMAP_DATA_o <= x"FF"; 
     
        elsif(CLOCK_i'event and CLOCK_i = '1') then 



90 

     
            T_SELECTMAP_INIT_o <= '1'; 
            T_SELECTMAP_CS_o <= '1'; 
            T_SELECTMAP_WRITE_o <= '1'; 
     
            reading_sm_data <= '0'; 
            reading_sm_data_d <= reading_sm_data; 
     
            -- Give it some time  
            if (count_readback < READBACK_DELAY) then 
                count_readback <= count_readback + 1; 
     
            -- Write the readback commands to X2s selectmap interface 
            elsif (count_readback < READBACK_COMMAND_LENGTH +  
                                    READBACK_DELAY ) then 
                T_SELECTMAP_CS_o <= '0'; 
                T_SELECTMAP_WRITE_o <= '0'; 
                T_SELECTMAP_DATA_o <=  
                        readback_command(count_readback - 

READBACK_DELAY ); 
                count_readback <= count_readback + 1; 
     
            --INITialize readback (deassert CS and WRITE) 
            elsif (count_readback < READBACK_COMMAND_LENGTH + 

READBACK_DELAY +  
                                    READBACK_INIT1_DELAY ) then 
                T_SELECTMAP_CS_o <= '1'; 
                T_SELECTMAP_WRITE_o <= '1'; 
                count_readback <= count_readback + 1; 
     
            -- INITialize readback (assert CS) 
            elsif (count_readback < READBACK_OFFSET ) then 
                T_SELECTMAP_CS_o <= '0'; 
                T_SELECTMAP_WRITE_o <= '1'; 
                count_readback <= count_readback + 1; 
     
            -- read back the configuration data from X2 
            elsif ((count_readback < (READBACK_LENGTH)) ) then  
     
                T_SELECTMAP_CS_o <= '0'; 
                T_SELECTMAP_WRITE_o <= '1'; 
                reading_sm_data <= '1'; 
                -- data_d will be FF until second clock in this 

statement 
                -- this prevents SM readback from hanging on the next 

statement 
                -- if there happen to be no FFs at the beginning 
                s_selectmap_data_d <= s_selectmap_data_i; 
     
                -- Skip all dummy FF data coming out of the selectmap 

interface  
                -- at the beginning 
                if (s_selectmap_data_i /= x"FF" and  
                    s_selectmap_data_d = x"FF") then 
                    strt_rb <= '1'; 
                end if; 
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                -- Don't increment the readback counter unless we've 
cleared out  

                -- all the dummy FF's (strt_rb = '1') and we we are 
latching  

                -- the selectmap data in the read_sm_st of the state 
machine 

                -- CCLK is clocked off of read_sm_st as well, so every 
time 

                -- we are in read_sm_st, another byte of selectmap data 
is 

                -- clocked out, and we grab it the next time we're in 
read_sm_st 

                -- we only want to increment the counter when we 
actually  

                -- grab a selectmap readback byte 
                if (report_error_state = read_sm_st and strt_rb = '1' ) 

then 
                    count_readback <= count_readback + 1; 
                end if; 
     
            -- sit here until we get a readback request from top level 
            elsif (count_readback = READBACK_LENGTH ) then 
                count_readback <= READBACK_LENGTH; 
                SM_RB_STATUS_o <= '0'; 
                strt_rb <= '0'; 
                -- Make sure this starts out as FF so we will start the 

readback 
                -- even if there are no dummy FF's at the beginning of 

the 
                -- readback 
                s_selectmap_data_d <= x"FF"; 
 
                if (SM_RB_RQST_i = '1') then 
                   count_readback <= 0; 
                   SM_RB_STATUS_o <= '1'; 
                end if; 
 
            end if; 
        end if; 
    end process; 
     
end rtl; 
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G. X1 PC/104 INTERFACE VHDL PACKAGE 
(from [17]) 

----------------------------------------------------------------------- 
-- pc104Int.vhd                                                      -- 
-- Author: Mindy Surratt, 2005                                       -- 
-- Research Associate, Naval Postgraduate School, Monterey, CA       -- 
--                                                                   -- 
-- PC/104 Interface code package                                     -- 
-- constants: bus addresses for the PC/104 interface                 -- 
-- everything else unused                                            -- 
----------------------------------------------------------------------- 
library ieee; 
use ieee.std_logic_1164.all; 
use std.textio.all; 
 
package pc104IntPack is 
 
  --------------------------------------------------------------------- 
  --  PC104 Bus Address  
  --------------------------------------------------------------------- 
CONSTANT C_IMULowAddress  : std_logic_vector(9 downto 0) := 

"1101000000"; --x340 
CONSTANT C_IMUHighAddress : std_logic_vector(9 downto 0) := 

"1101101000"; --x368 
CONSTANT C_LowAddress     : std_logic_vector(9 downto 0) := 

"1101000000"; --x340 
CONSTANT C_HighAddress    : std_logic_vector(9 downto 0) := 

"1101101000"; --x368 
CONSTANT C_RESET          : std_logic_vector(9 downto 0) := 

"1101000010"; --x342 
CONSTANT C_TEST_ADDR      : std_logic_vector(9 downto 0) := 

"1101000001"; --x341 
CONSTANT C_pix_ADDR       : std_logic_vector(9 downto 0) := 

"1101000000"; --x340 
CONSTANT C_STATUS_ADDR    : std_logic_vector(9 downto 0) := 

"1101000011"; --x343 
 
function TMR( a:std_logic_vector;b:std_logic_vector;c:std_logic_vector) 
return std_logic_vector; 
 
function  TMR( a:std_logic;b:std_logic;c:std_logic) 
return std_logic; 
end pc104IntPack; 
 
package body pc104IntPack is 
 
function TMR( a:std_logic_vector;b:std_logic_vector;c:std_logic_vector) 
    return std_logic_vector is 
    variable tmr_ret :std_logic_vector(a'range); 
begin 
    for i in a'range loop 
        tmr_ret(i) := (a(i) and c(i)) or (a(i) and b(i)) or (b(i) and  

c(i)); 
    end loop; 
    return tmr_ret; 
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end TMR; 
 
function TMR( a:std_logic;b:std_logic;c:std_logic) 
    return std_logic is 
    variable tmr_ret :std_logic; 
begin 
    tmr_ret:= (a and c) or (a and b) or (b and  c); 
    return tmr_ret; 
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H. X1 PC/104 INTERFACE CODE 
(from [17]) 

----------------------------------------------------------------------- 
-- pc104Int.vhd                                                      -- 
-- Author: Mindy Surratt, 2005                                       -- 
-- Research Associate, Naval Postgraduate School, Monterey, CA       -- 
--                                                                   -- 
-- PC/104 Interface code                                             -- 
----------------------------------------------------------------------- 
 
library IEEE; 
--library exemplar; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
--use exemplar.exemplar_1164.all; 
use work.pc104intpack.all; 
 
-- 
--  PC104 interface 
-- 
entity pc104Int is 
    port ( 
    -- 
    -- Inputs 
    -- 
    Clk_i           : in std_logic; 
    reset           : in std_logic; 
    T_Address_i_    : in STD_LOGIC_VECTOR (9 downto 0); 
    T_IORead_i      : in STD_LOGIC; --active low, read data into 

T_Data_io  
    T_IOWrite_i     : in STD_LOGIC; -- active high 
    T_AEN_i         : in STD_LOGIC; -- active low        
 
    -- IO 
    T_Data_io_    : inout STD_LOGIC_VECTOR (7 downto 0); 
 
-- 
--  FPGA side interface 
-- 
    pix_data_out    : out std_logic_vector(7 downto 0); 
    pix_data_rdy    : out std_logic; 
    pix_data_ack    : in  std_logic; 
 
    pix_data_in     : in std_logic_vector(7 downto 0); 
    pix_data_wr     : in std_logic --active high 
 
    ); 
end pc104Int; 
 
architecture rtl of pc104Int is 
 
component fifo_out 
    port ( 
    din: IN std_logic_VECTOR(31 downto 0); 
    wr_en: IN std_logic; 
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    wr_clk: IN std_logic; 
    rd_en: IN std_logic; 
    rd_clk: IN std_logic; 
    ainit: IN std_logic; 
    dout: OUT std_logic_VECTOR(31 downto 0); 
    full: OUT std_logic; 
    empty: OUT std_logic); 
end component; 
-- 
--  SIGNALS 
-- 
SIGNAL S_IOTemp___: STD_LOGIC_VECTOR(7 downto 0); 
SIGNAL TestData __: STD_LOGIC_VECTOR(7 downto 0); 
SIGNAL TestData2__: STD_LOGIC_VECTOR(7 downto 0); 
SIGNAL S_Decode___: STD_LOGIC; 
SIGNAL S_RangeCheck     _: STD_LOGIC; 
signal iow___: std_logic; 
signal iow_d___: std_logic; 
signal data_in___: std_logic_vector(7 downto 0); 
signal addr___: std_logic_vector(9 downto 0); 
signal aen___: std_logic; 
signal pix_data_in_reg__: std_logic_vector(7 downto 0); 
signal status_reg__: std_logic_vector(7 downto 0); 
signal status_reg_iord__: std_logic_vector(7 downto 0); 
signal status_read__: std_logic; 
signal status_read_d__: std_logic; 
signal status_reg_d__: std_logic; 
signal status_read_dd__: std_logic; 
signal ioread_d___: std_logic; 
signal ioread_dd___: std_logic; 
signal fifo_read: std_logic; 
signal fifo_read_d: std_logic; 
signal fifo_read_dd: std_logic; 
signal fifo_rd: std_logic; 
signal full:std_logic; 
signal empty:std_logic; 
signal ainit:std_logic; 
signal fifo_din: std_logic_vector(31 downto 0); 
signal fifo_dout: std_logic_vector(31 downto 0); 
 
begin 
ainit <= '0'; 
-- 
-- sync 
-- 
process(clk_i) 
begin 
if(clk_i'event and clk_i = '1' ) then 
   data_in <= T_data_io; 
   iow <= T_IOWrite_i;  
   iow_d <= iow; 
   aen<= t_aen_i; 
   addr<= t_address_i; 
end if; 
end process; 
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    -- 
    -- Address Range Check lines 
    -- 
    S_RangeCheck <= '1' when (  (T_Address_i >= C_LowAddress) 
                            and (T_Address_i <= C_HighAddress) ) 
                        else '0'; 
 
    -- 
    -- Decode Line 
    -- 
    S_Decode <= '1' when (T_AEN_i = '0' and S_RangeCheck = '1') else 

'0'; 
    -- 
    -- Bidirctional Data IO 
    -- 
    T_Data_io <= S_IOTemp when (S_Decode = '1' and T_IORead_i = '0')   
                          else "ZZZZZZZZ";   
 
 
IOWrite: Process(clk_i)  
begin 
    if(clk_i'event and clk_i = '1' ) then 
 
        if(pix_data_ack = '1') then 
            pix_data_rdy <= '0'; 
        end if; 
 
        if(iow = '1' and iow_d = '0') then 
 
            if AEN = '0' then 
 
                case Addr is 
 
                    when C_TEST_ADDR => 
                            TestData(7 downto 0) <= data_in; 
 
                    when C_pix_ADDR => 
                            pix_data_out(7 downto 0) <= data_in; 
                            pix_data_rdy <= '1'; 
 
                    when others => 
                            NULL; 
 
                end case; 
 
            end if; 
 
        end if; 
 
    end if; 
end process; 
 
IORead: Process(T_Address_i,TestData,pix_data_in_reg,status_reg_iord) 
begin 
 
    fifo_read <= '0'; 
    status_read <= '0'; 
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    case T_Address_i is 
 
        when C_pix_ADDR=>  
                S_IOTemp <=  pix_data_in_reg; 
                fifo_read <= '1'; 
 
        when C_STATUS_ADDR => 
                S_IOTemp <= status_reg_iord; 
                status_read <= '1'; 
 
        when others => 
                S_IOTemp <=   (others => '0'); 
 
        end case; 
 
end process; 
 
process(clk_i,reset) 
begin 
 
    if (reset = '1') then 
 
        status_reg_iord(0) <= '0'; 
 
    elsif(clk_i'event and clk_i = '1') then 
 
        fifo_read_d <= fifo_read; 
        fifo_read_dd <= fifo_read_d; 
        status_reg_iord(7 downto 1) <= (others => '0'); 
 
        if (fifo_rd = '1') then 
            status_reg_iord(0) <= '1'; 
        end if; 
 
        if (ioread_d = '1' and ioread_dd = '0' and fifo_read_dd = '1' ) 

then 
            status_reg_iord(0) <= '0'; 
        end if; 
 
    end if; 
 
end process; 
 
fifo_rd <= '1' when empty = '0' and status_reg_iord(0) = '0' else '0'; 
 
process(clk_i) 
begin 
 
    if(clk_i'event and clk_i = '1') then 
 
        status_reg(7 downto 1) <= (others => '0');  
        ioread_d <= T_IORead_i; 
        ioread_dd <= ioread_d; 
        status_read_d <=  status_read; 
        status_read_dd <=  status_read_d; 
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        if(pix_data_wr = '1' ) then 
            status_reg(0)<= '1'; 
        end if; 
 
        if (ioread_d = '1' and ioread_dd = '0' and status_reg_iord(0) = 

'1'  
                and status_read = '1'  ) then 
            status_reg(0) <= '0'; 
        end if; 
 
    end if; 
 
end process; 
 
fifo_din(31 downto 8) <= (others => '0'); 
fifo_din(7 downto 0) <= pix_data_in; 
pix_data_in_reg <= fifo_dout(7 downto 0); 
 
fifo_out_1 : fifo_out 
port map ( 
    din => fifo_din, 
    wr_en => pix_data_wr, 
    wr_clk => clk_i, 
    rd_en => fifo_rd, 
    rd_clk => clk_i, 
    ainit => ainit, 
    dout => fifo_dout, 
    full => full, 
    empty => empty); 
 
end rtl; 
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I. X2 INTERFACE CODE FOR X1 
(after [17]) 

------------------------------------------------- 
-- filename: x2Int.vhd 
-- author: Mindy Surratt (2005) 
-- modified: James Coudeyras (2005) 
-- 
-- This file is the X1 control interface to X2. 
-- Any additional programs necessary to run the X2 experiment 
-- are incorporated into this module. 
-- This module also contains the reporting and readback 
-- requirements as well as the reconfiguration threshold 
-- 
------------------------------------------------- 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
use IEEE.std_logic_unsigned.all; 
use IEEE.std_logic_arith.all; 
 
entity x2Int is  
 
-- FOR SR IMPLEMENTATION {START} 
    generic (NUM_OF_TAPS    : integer := 2; -- Number of taps LFSR 
        WIDTH               : integer := 15; -- Width of m-length LFSR 
        NUM_SRS             : integer := 16); -- # of shift registers 

in X2 
-- FOR SR IMPLEMENTATION {END} 
 
    port ( 
        CLOCK_i             : in std_logic; -- 25 MHz system clock 
        CLOCK_X2_i          : in std_logic; -- 12.5 MHz system clock w/ 

reset 
                                            -- add appropriate clock to 

clockGen 
        RESET_i             : in std_logic; -- Reset signal 
 
-- FOR SR IMPLEMENTATION {START}, signals coming directly to/from X2 
-- JCC 20051031 SR copy removed from X1 on this and future versions, 

fcn implemented on X2 
        T_BITOUT_TO_X2_o        : out std_logic; 
        T_RESET_TO_X2_o         : out std_logic; 
        T_CE_TO_X2_o            : out std_logic; -- clock enable to X2 
        T_DOUT_FROM_X2_i        : in std_logic; -- verify LFSR 

operation  
        T_XOR_DOUT_FROM_X2_i    : in std_logic; -- function moved to X2 
        T_SUMDIFF_FROM_X2_i     : in std_logic_vector (15 downto 0); 
-- FOR SR IMPLEMENTATION {END} 
 
        DATA_o              : out std_logic_vector(7 downto 0); 
          --Data bus out of X2 interface, in this case used to write to 

PC104 
        DATA_i              : in std_logic_vector(7 downto 0); 
          --Data bus into X2 interface, in this case used to read from 

PC104 
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        PC104_WR_EN_o       : out std_logic; 
          -- Active high, if WR_RDY = '1', then set WR_EN = '1' for one 

clock 
          --  and whatever is on DATA_o when WR_EN is high will get 

written to PC104 
 
        PC104_WR_RDY_i      : in std_logic; --Active High, ok to write 

to PC104 
          -- if WR_RDY is high, whatever you write to PC104 
          -- will definitely get printed (your component has priority) 
 
        PC104_RD_RDY_i      : in std_logic; --Active high, if RD_RDY = 

'1', then there is 
          -- data on the PC104 bus ready to be read. Once you read the 

data (from DATA_i), 
          -- set RD_ACK high for one clock to release the PC104 
 
        PC104_RD_ACK_o      : out std_logic; --Active high 
 
        SM_CONFIG_RQST_o    : out std_logic; --Active high, set 

config_rqst high 
          -- for one clock if you want to start a selectmap 

config/reconfig 
 
        SM_CONFIG_STATUS_i  : in std_logic; --Active high, stays '1' as 

long as 
          -- a selectmap config is going on (don't request a readback 

or reconfig while 
          -- either is still active, it won't hurt anything, but it 

won't go through) 
 
        SM_RB_RQST_o        : out std_logic;--Active high, set rb_rqst 

high 
          -- for one clock if you want to start a selectmap readback 
 
        SM_RB_STATUS_i      : in std_logic --Active high, stays '1' as 

long as 
          -- a selectmap rb is going on (don't request a readback or 

reconfig while  
          -- either is still active, it won't hurt anything, but it 

won't go through) 
    ); 
end x2Int; 
 
architecture rtl of x2Int is 
 
-- DLY_TIME counter and reset signals 
 
    CONSTANT DLY_TIME           : integer := 750000000; --SIMULATION 

5000; 
    -- ~30 seconds 
    signal s_reset_sr           : std_logic; 
    signal first_reset          : std_logic; 
    signal sm_rb_status_d       : std_logic; 
    signal dly_cnt              : integer range 0 to 1000000000; 
    signal dly_start_rb         : std_logic; 
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    signal sm_config_status_d   : std_logic; 
 
-- Error report timer signals 
    CONSTANT ERR_RPT_TIME       : integer := 75000000; --heartbeat 

reports every 3 sec 
      -- time between automatic error reports, adjust as needed (use 50 

for simulations) 
    CONSTANT REPORT_OUT_LENGTH  : integer := 23; -- set to the number 

of bytes 
      -- included in your output vector that needs to be printed to 

PC104 
    signal sr_timer         : integer range 0 to ERR_RPT_TIME; -- for 

heartbeat reports 
    signal count_out_vect   : integer range 0 to REPORT_OUT_LENGTH; 
    signal report_out_vect  : std_logic; 
-- ensure these split lines don't cause a problem 
    type output_vector is array (REPORT_OUT_LENGTH-1 downto 0) 
        of std_logic_vector(7 downto 0); 
    signal out_vect         : output_vector; 
 
-- readback/reconfig process, CLOCK_X2_i signals 
    signal reconfig_from_error      : std_logic; 
    signal sr_start_rb              : std_logic; 
 
--readback/reconfig process, T_CLOCK_i signals 
    signal reconfig_from_error_t_clock  : std_logic; 
    signal reconfig_from_error_save     : std_logic; 
    signal rb_started                   : std_logic; 
    signal reconfig_timer               : integer range 0 to 

ERR_RPT_TIME; 
 
-- X1 SR signals (LFSR) {START} 
    signal bit_out              : std_logic; 
    signal lfsr                 : std_logic_vector(WIDTH-1 downto 0) := 

"111111111111111"; 
    signal par_fdbk             : std_logic_vector(NUM_OF_TAPS downto 

0); --parity fdbk 
    signal lfsr_in              : std_logic; --mux  
 
    type column is array ((NUM_SRS-1) downto 0) of std_logic_vector(7 

downto 0); 
 
    type tap_point_array is array (NUM_OF_TAPS-1 downto 0) of integer; 
    -- Parameterize LFSR taps. (e.g. g(D) = D^15 + D + 1) 
    -- Tap points, including output tap 0. 
    constant TAP                : tap_point_array := (1, 0); 
 
-- X1 SR signals (SR) 
    signal ce                   : std_logic := '1'; 
-- JCC 20051031 split ce into 30 sec smrb and reconfig from error 
    signal ce_30                : std_logic := '1'; 
    signal ce_recon             : std_logic := '1'; 
    signal s_dout_from_X2_i     : std_logic_vector(7 downto 0);  
 
-- X1 SR signals (Counter) 
    signal cnt_dout_err     : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V0       : std_logic_vector (7 downto 0) :=x"00"; 



102 

    signal cnt_col_V1       : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V2       : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V3       : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V4       : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V5       : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V6       : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V7       : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V8       : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V9       : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V10      : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V11      : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V12      : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V13      : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V14      : std_logic_vector (7 downto 0) :=x"00"; 
    signal cnt_col_V15      : std_logic_vector (7 downto 0) :=x"00"; 
-- X1 SR signals {END} 
 
begin 
 
-- Asynchronous assignments of top level signals  
    T_RESET_TO_X2_o <= s_reset_sr; 
--MLS might help if we actually use sr_start_rb... 
--MLS 20051018 get rid of reconfig from error for now 
    SM_RB_RQST_o <= sr_start_rb or  dly_start_rb;  
--    SM_RB_RQST_o <= dly_start_rb;  
    SM_CONFIG_RQST_o <= reconfig_from_error_t_clock; 
--    SM_CONFIG_RQST_o <= '0'; 
 
-- Processes for SR implementation (LFSR portion) {START} 
    T_BITOUT_TO_X2_o <= bit_out; 
 
--MLS SR stop SR during readback 
    T_CE_TO_X2_o <= ce; -- clock enable 
 
-- JCC 20051031 make ce function of 30 second rb ce and reconfig from 

error ce 
    ce <= (ce_30 and ce_recon); 
    ce_30 <= (not SM_RB_STATUS_i); -- clock disable for 30 sec readback 
 
    lfsr0 : process(CLOCK_X2_i) begin 
        if (s_reset_sr = '1') then 
            lfsr <= (others=>'1'); 
        elsif (CLOCK_X2_i'event and CLOCK_X2_i='1') then 
            if (ce = '1') then 
                lfsr <= lfsr_in & lfsr(lfsr'high downto 1); 
            end if; 
        end if; 
    end process; 
 
    par_fdbk(0) <= '0'; 
 
    fdbk : for X in 0 to TAP'high generate -- parity generator 
        par_fdbk(X+1) <= par_fdbk(X) xor lfsr(TAP(X)); 
    end generate fdbk; 
 
    lfsr_in <= par_fdbk(par_fdbk'high); 
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    bit_out <= lfsr(lfsr'low); -- LFSR output 
 
-- Processes for SR implementation (LFSR portion) {END} 
 
-- Processes for SR implementation (Counter portion) {START} 
 
-- This process counts errors from X2, compares the output from the a-

side of X2 SRs 
-- with the a-side of X1 (counts errors), and resets error counters 
    counter : process (CLOCK_X2_i, s_reset_sr) 
        variable cnt_dout_var : integer range 0 to 255 := 0; 
 
    begin 
 
        if (s_reset_sr = '1') then 
            cnt_dout_var := 0; 
            cnt_dout_err <= X"00"; 
            cnt_col_V0 <= x"00"; 
            cnt_col_V1 <= x"00"; 
            cnt_col_V2 <= x"00"; 
            cnt_col_V3 <= x"00"; 
            cnt_col_V4 <= x"00"; 
            cnt_col_V5 <= x"00"; 
            cnt_col_V6 <= x"00"; 
            cnt_col_V7 <= x"00"; 
            cnt_col_V8 <= x"00"; 
            cnt_col_V9 <= x"00"; 
            cnt_col_V10 <= x"00"; 
            cnt_col_V11 <= x"00"; 
            cnt_col_V12 <= x"00"; 
            cnt_col_V13 <= x"00"; 
            cnt_col_V14 <= x"00"; 
            cnt_col_V15 <= x"00"; 
 
        elsif (CLOCK_X2_i'event and CLOCK_X2_i='1') then 
 
--MLS SR don't do this if we're reading back, will get nonsense 
            if (ce = '1') then 
 
                s_dout_from_X2_i <= "0000000" & T_DOUT_FROM_X2_i; 
 
                if (T_XOR_DOUT_FROM_X2_i = '1') then 
                    cnt_dout_var := cnt_dout_var + 1; 
                end if; 
                cnt_dout_err <= 

std_logic_vector(to_unsigned(cnt_dout_var,8)); 
 
                if T_SUMDIFF_FROM_X2_i(0)='1' then 
                    cnt_col_V0 <= cnt_col_V0 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(1)='1' then 
                    cnt_col_V1 <= cnt_col_V1 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(2)='1' then 
                    cnt_col_V2 <= cnt_col_V2 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(3)='1' then 
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                    cnt_col_V3 <= cnt_col_V3 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(4)='1' then 
                    cnt_col_V4 <= cnt_col_V4 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(5)='1' then 
                    cnt_col_V5 <= cnt_col_V5 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(6)='1' then 
                    cnt_col_V6 <= cnt_col_V6 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(7)='1' then 
                    cnt_col_V7 <= cnt_col_V7 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(8)='1' then 
                    cnt_col_V8 <= cnt_col_V8 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(9)='1' then 
                    cnt_col_V9 <= cnt_col_V9 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(10)='1' then 
                    cnt_col_V10 <= cnt_col_V10 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(11)='1' then 
                    cnt_col_V11 <= cnt_col_V11 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(12)='1' then 
                    cnt_col_V12 <= cnt_col_V12 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(13)='1' then 
                    cnt_col_V13 <= cnt_col_V13 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(14)='1' then 
                    cnt_col_V14 <= cnt_col_V14 + 1; 
                end if; 
                if T_SUMDIFF_FROM_X2_i(15)='1' then 
                    cnt_col_V15 <= cnt_col_V15 + 1; 
                end if; 
            end if; 
        end if; 
    end process; 
-- Processes for SR implementation (Counter portion) {END} 
 
-- Timer to determine how frequently to print out heart beat error 

reports (every 3 sec) 
    process(CLOCK_i, s_reset_sr) begin 
        if (s_reset_sr = '1') then 
            sr_timer <= 0; 
        elsif(CLOCK_i'event and CLOCK_i = '1') then 
            if (sr_timer = ERR_RPT_TIME) then 
                sr_timer <= 0; 
            else 
                sr_timer <= sr_timer + 1; 
            end if; 
        end if; 
    end process; 
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-- Do reset for sr 
    process (CLOCK_i,RESET_i) begin 
        if (RESET_i = '1') then 
            s_reset_sr <= '1'; 
        elsif (CLOCK_i'event and CLOCK_i = '1') then 
            sm_config_status_d <= SM_CONFIG_STATUS_i; 
 
--MLS hold reset high for 30 seconds, do reset after config 
--MLS 2005.09.15 only hold reset high until version is done and x2 is 

done configuring, no need 
-- to hold everything off for 30s 
            s_reset_sr <= '0'; 
--MLS 2005.10.18 reset counters and sr as soon as a reconfig happens 
            if (first_reset='0' or (SM_CONFIG_STATUS_i = '0' and 

sm_config_status_d = '1' ) ) then 
                s_reset_sr <= '1'; 
            end if; 
        end if; 
    end process; 
 
--MLS 2005.09.15 wait until after X2 is done configuring to do first 

reset (instead of 30s) 
    process(CLOCK_i,RESET_i) begin 
        if (RESET_i = '1') then 
            first_reset <= '0'; 
        elsif (CLOCK_i'event and CLOCK_i = '1') then 
            if (first_reset = '0' and SM_CONFIG_STATUS_i = '0' and 

sm_config_status_d = '1') then 
                first_reset <= '1'; 
            end if; 
        end if; 
    end process; 
 
-- Every DLY_TIME clocks after that, do a selectmap readback 
-- don't start dly_cnt until s_reset_sr goes low 
-- (after version is done and x2 config is done) 
    process(CLOCK_i, s_reset_sr) 
    begin 
        if (s_reset_sr = '1') then 
            sm_rb_status_d <= '0'; 
            dly_cnt <= 0; 
            dly_start_rb <= '0'; -- Signal to notify that the delay 

counter wants 
                                 -- to perform a SMRB 
 
        elsif(CLOCK_i'event and CLOCK_i = '1') then 
 
            dly_start_rb <= '0'; 
            sm_rb_status_d <= SM_RB_STATUS_i; 
         
-- If we just finished a SMRB, start the counter over 
            if (SM_RB_STATUS_i = '0' and sm_rb_status_d = '1') then 
               dly_cnt <= 0; 
            elsif (dly_cnt < DLY_TIME) then 
                dly_cnt <= dly_cnt + 1; 
            elsif (dly_cnt = DLY_TIME) then 
                dly_cnt <= 0; 
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                dly_start_rb <= '1'; -- After DLY_TIME clocks, start a 
readback 

            end if; 
        end if; 
    end process; 
-- SMRB strictly based on time (not certain number of errors 
 
--Process to write error reports out to the PC104 
    process (CLOCK_i, s_reset_sr) begin 
        if (s_reset_sr = '1') then --hold off printing error reports 

until SR is reset 
            count_out_vect <= 0; 
            report_out_vect <= '0'; 
            PC104_WR_EN_o <= '0'; 
            DATA_o <= x"31"; 
        elsif (CLOCK_i'event and CLOCK_i = '1') then 
 
            PC104_WR_EN_o <= '0'; --default assignment for WR_EN 
 
-- Whenever we've gone through ERR_RPT_TIME clocks or we get an error 

from X2 (a signal 
-- coming directly from X2), and we've already finished printing out 

the last error report 
-- (report_out_vect = '0'), set the output error report vector to the 

correct values 
            if ( (reconfig_from_error = '1' and report_out_vect = '0') 

or ( sr_timer = ERR_RPT_TIME and report_out_vect = '0' 
and 

                    reconfig_from_error_save = '0' and 
SM_CONFIG_STATUS_i = '0' ) ) then 

                        -- send out_vect to PC104 
                out_vect(0) <= x"45"; --E 
                out_vect(1) <= x"52"; --R, easier to spot error reports 

in output 
                out_vect(2) <= s_dout_from_X2_i(7 downto 0); 
                out_vect(3) <= s_dout_from_X2_i(7 downto 0); -- extra 

output vector 
                out_vect(4) <= T_SUMDIFF_FROM_X2_i(15 downto 8); 
                out_vect(5) <= T_SUMDIFF_FROM_X2_i(7 downto 0); 
                out_vect(6) <= cnt_dout_err; 
                out_vect(7) <= cnt_col_V15; 
                out_vect(8) <= cnt_col_V14; 
                out_vect(9) <= cnt_col_V13; 
                out_vect(10) <= cnt_col_V12; 
                out_vect(11) <= cnt_col_V11; 
                out_vect(12) <= cnt_col_V10; 
                out_vect(13) <= cnt_col_V9; 
                out_vect(14) <= cnt_col_V8; 
                out_vect(15) <= cnt_col_V7; 
                out_vect(16) <= cnt_col_V6; 
                out_vect(17) <= cnt_col_V5; 
                out_vect(18) <= cnt_col_V4; 
                out_vect(19) <= cnt_col_V3; 
                out_vect(20) <= cnt_col_V2; 
                out_vect(21) <= cnt_col_V1; 
                out_vect(22) <= cnt_col_V0; 
                report_out_vect <= '1'; 
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            end if; 
 
-- If we've set the output vector (report_out_vect = '1'), then print 

the output vector 
-- to the PC104 one byte at a time (REPORT_OUT_LENGTH bytes will be 

printed) 
-- Be sure to set REPORT_OUT_LENGTH to proper value in signal 

definitions above 
            if (report_out_vect='1') then 
                if (count_out_vect < REPORT_OUT_LENGTH and 

PC104_WR_RDY_i = '1') then 
--MLS 
--                    ce <= '0'; -- disables shift registers while 

reading errors 
                    DATA_o <= out_vect(count_out_vect); 
                    PC104_WR_EN_o <= '1'; 
                    count_out_vect <= count_out_vect + 1; 
                elsif (count_out_vect = REPORT_OUT_LENGTH) then 
--MLS 
--                    ce <= '1'; -- enables shift registers after 

report finished 
                    count_out_vect <= 0; 
                    report_out_vect <= '0'; 
                end if; 
            end if; 
        end if; 
    end process; 
 
    process(CLOCK_X2_i,s_reset_sr) begin 
 
        if (s_reset_sr = '1') then 
 
            reconfig_from_error <= '0'; 
 
        elsif (CLOCK_X2_i'event and CLOCK_X2_i = '1') then 
 
            reconfig_from_error <= '0'; 
 
            if ( (cnt_col_V0 = x"80" or cnt_col_V1 = x"80" or  

cnt_col_V2 = x"80" or 
                    cnt_col_V3 = x"80" or  cnt_col_V4 = x"80" or  

cnt_col_V5 = x"80" or 
                    cnt_col_V6 = x"80" or  cnt_col_V7 = x"80" or  

cnt_col_V8 = x"80" or 
                    cnt_col_V9 = x"80" or  cnt_col_V10 = x"80" or  

cnt_col_V11 = x"80" or 
                    cnt_col_V12 = x"80" or  cnt_col_V13 = x"80" or  

cnt_col_V14 = x"80" or 
                    cnt_col_V15 = x"80" or cnt_dout_err = x"80") and 

reconfig_from_error = '0' and reconfig_from_error_save = 
'0' ) then 

                reconfig_from_error <= '1'; 
            end if; 
 
        end if; 
 
    end process; 
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--process to trigger SMRB/RC on errors 
    process(CLOCK_i, s_reset_sr) begin 
        if (s_reset_sr = '1') then 
 
            reconfig_timer <= 0; 
            reconfig_from_error_save <= '0'; 
            reconfig_from_error_t_clock <= '0'; 
            sr_start_rb <= '0'; --signal to notify the sr counter has 

reported 
                                -- enough errors to warrant a readback 
            rb_started <= '0'; --make sure sr_start_rb only 1 clock 
            ce_recon <= '1'; 
 
        elsif (CLOCK_i'event and CLOCK_i = '1') then 
 
            sr_start_rb <= '0'; 
            reconfig_timer <= reconfig_timer + 1; 
            reconfig_from_error_t_clock <= '0'; 
 
-- If we got a reconfig request from the sr, hold that thought 
            if (reconfig_from_error = '1') then 
                reconfig_timer <= 0; 
                reconfig_from_error_save <= '1'; 
                ce_recon <= '0'; 
 
-- Wait until SMRB is done, and then request a reconfig from the top 

level 
            elsif ( reconfig_from_error_save = '1' and SM_RB_STATUS_i = 

'0' and 
                    sm_rb_status_d = '1' ) then 
                reconfig_from_error_t_clock <= '1'; 
                reconfig_from_error_save <= '0'; 
                rb_started <= '0'; 
 
-- Wait until last error report is printed out before starting readback 
-- Once readback has started, don't start another one! 
-- Wait to start readback for ~3s (50000000) after reaching critical 
-- number of errors, this is for JTAG external error injection, errors 
-- begin accumulating before it is done programming, so 128 errors 
-- could be reached before partial reconfig complete, so tries to 
-- readback while JTAG still going on. 
            elsif (reconfig_from_error_save = '1' and reconfig_timer = 

ERR_RPT_TIME and 
                    report_out_vect = '0' and SM_RB_STATUS_i = '0' and 

rb_started = '0' ) then 
                sr_start_rb <= '1'; 
                rb_started <= '1'; 
 
            end if; 
 
        end if; 
    end process; 
 
end rtl; 
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J. CLOCK CODE 
(after [17]) 

------------------------------------------------- 
-- filename: clockGen.vhd 
-- author: Mindy Surratt (2005) 
-- modified: James Coudeyras (2005) 
-- 
-- This file divides the 25 MHz clock down to 12.5 MHz 
-- 
------------------------------------------------- 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
use IEEE.std_logic_unsigned.all; 
use IEEE.std_logic_arith.all; 
 
entity clockGen is 
 
    port ( 
 
        T_CLOCK_i           : in std_logic; 
 
        CLOCK_o             : out std_logic; 
        CLOCK_X2_o          : out std_logic; 
        RESET_FROM_X2INT_i  : in std_logic; 
 
        CLOCK_NOBUFG_o      : out std_logic 
    ); 
 
end clockGen; 
 
architecture rtl of clockGen is 
 
--REMOVE FOR SIMULATION 
    component BUFG port (  
        I                   : in std_logic; 
        O                   : out std_logic); 
    end component; 
 
    signal s_clock              : std_logic; 
    signal s_clock_i            : std_logic := '0'; 
    signal s_clock_X2           : std_logic; 
    signal s_clock_X2_i         : std_logic := '0'; 
    signal s_clock_X2_cnt       : integer range 0 to 16; 
 
begin 
 
    CLOCK_NOBUFG_o <= s_clock_i; 
 
    process(t_clock_i) 
    begin 
        if(T_CLOCK_i'event and T_CLOCK_i = '1') then 
            s_clock_i <= not s_clock_i; 
        end if; 
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    end process; 
 
-- FOR SR IMPLEMENTATION {START} 
-- (used because this clock has a reset) 
    process (T_CLOCK_i,RESET_FROM_X2INT_i) begin 
        if (RESET_FROM_X2INT_i = '1') then 
            s_clock_x2_i <= '0'; -- changed _cnt to _i 
        elsif (T_CLOCK_i'event and T_CLOCK_i = '1') then 
            if (s_clock_X2_cnt >= 1) then  -- this achieves a divide by 

2 clock period!!! 
                s_clock_X2_i <= not s_clock_X2_i; 
                s_clock_X2_cnt <= 0; 
            else 
                s_clock_X2_cnt <= s_clock_X2_cnt + 1; 
            end if; 
        end if; 
    end process; 
-- FOR SR implementation {END} 
 
--MLS REMOVE FOR SIMULATION 
--s_clock_X2 <= s_clock_X2_i; 
--s_clock <= s_clock_i; 
--Clock distribution network for X2 clock 
    s_clock_X2_bufg : BUFG port map ( -- comment out this code only for 

simulations!!! 
        I           => s_clock_X2_i, 
        O           => CLOCK_X2_o  
    ); 
--Clock distribution network for 25MHz system clock 
    s_clock_bufg : BUFG port map ( -- comment out this code only for 

simulations!!! 
        I           => s_clock_i, 
        O           => CLOCK_o 
    ); 
 
end rtl; 
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K. X1 TOP-LEVEL CODE 
(after [17]) 

------------------------------------------------- 
-- filename: cftp_x1.vhd 
-- author: Mindy Surratt (2005) 
-- modified: James Coudeyras (2005) 
-- 
-- This is the top level code for X1 
-- 
------------------------------------------------- 
 
-- Modifications for different X2 implementations: 
-- only have to change signal names/sizes coming from X2 
-- must be changed in top level entity, x2Int component  
-- declaration, and x2Int port map.  search for "implementation" 
-- each instance that needs to be changed is surrounded  
-- by comments:  
-- for XXXXX implementation 
-- Also change signal names in ucf file 
 
 
--Naming conventions: 
-- Top level signals that go directly to pins, or pass directly through 
--  the top level to/from a component to pins 
--          T_XXXXXX_io T_XXXXXX_i  T_XXXXX_o 
-- Top level signals that do not pass directly to pins (ie, internal 
--  signals between components/top level 
--          XXXXXXX_io  XXXXX_i   XXXXXX_o 
-- Constants 
--          XXXXXXXX 
-- Internal signals 
--          xxxxxxxx  
-- internal signal that is just a copy or slight modification 
--   of top level signal 
--          s_xxxxx_io  s_xxxxx_i  s_xxxxx_o 
-- delayed copy of signal (ie signal_d <= signal) 
--          xxxxx_d 
-- state machine signal 
--          xxxxx_state 
-- state machine state 
--          xxxxx_st 
-- counter 
--          cnt_xxxxx 
-- start signal 
--          start_xxxxx 
-- done signal 
--          done_xxxxx 
 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
use IEEE.std_logic_unsigned.all; 
use IEEE.std_logic_arith.all; 
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entity cftp_x1 is 
    port ( 
 
-- To/From X2 for SR implementation {START} 
-- signals going to pins on X2 
-- change/add/remove as needed  
-- also change cftp_x1.ucf file to match 
        T_BITOUT_TO_X2_o        : out std_logic; 
        T_RESET_TO_X2_o         : out std_logic; 
        T_CE_TO_X2_o            : out std_logic; -- clock enable to X2 
        T_DOUT_FROM_X2_i        : in std_logic; --_vector (15 downto 

0); 
        T_XOR_DOUT_FROM_X2_i    : in std_logic; -- comparing douts on 

X2 
        T_SUMDIFF_FROM_X2_i     : in std_logic_vector (15 downto 0); 
-- To/From X2 for SR implementation {END} 
     
--PC/104 Signals 
        T_clock_i           : in STD_LOGIC; 
        T_Address_i         : in STD_LOGIC_VECTOR (9 downto 0); 
        T_IORead_i          : in STD_LOGIC; 
        T_IOWRITE_i         : in STD_LOGIC; 
        T_AEN_i             : in STD_LOGIC;         
        T_Data_io           : inout STD_LOGIC_VECTOR (7 downto 0); 
 
        T_X2_MODE           : out STD_LOGIC_VECTOR(2 downto 0); 
     
--Selectmap Signals 
        T_CCLK_o            : out STD_LOGIC; 
        T_SELECTMAP_INIT_o  : out STD_LOGIC; 
        T_SELECTMAP_WRITE_o : out STD_LOGIC; 
        T_SELECTMAP_CS_o    : out STD_LOGIC; 
        T_SELECTMAP_DATA_io : inout STD_LOGIC_VECTOR(7 downto 0); 
        T_SELECTMAP_BUSY_i  : in STD_LOGIC; 
 
--Flash Interface Signals 
        T_FLASH_DATA_i      : in STD_LOGIC_VECTOR (15 downto 0); 
        T_FLASH_ADDRESS_o   : out STD_LOGIC_VECTOR (20 downto 0); 
        T_FLASH_WE_o        : out STD_LOGIC; 
        T_FLASH_RP_o        : out STD_LOGIC;  
        T_FLASH_WP_o        : out STD_LOGIC; 
-- JCC implemented change from Mindy that allows for second flash on 

CFTP-2 
--        T_FLASH_CE_o        : out STD_LOGIC; 
     T_FLASH_CE_A_o      : out STD_LOGIC; 
        -- NO FLASH B on CFTP1 !!!! 
     T_FLASH_CE_B_o      : out STD_LOGIC; 
        T_FLASH_OE_o        : out STD_LOGIC 
    ); 
end cftp_x1; 
 
architecture rtl of cftp_x1 is 
 
    component clockGen port ( 
 
        T_CLOCK_i           : in std_logic; 
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        CLOCK_o             : out std_logic; 
        CLOCK_X2_o          : out std_logic; 
        RESET_FROM_X2INT_i  : in std_logic; 
 
        CLOCK_NOBUFG_o      : out std_logic ); 
 
    end component; 
 
    component x2Int port ( 
 
        CLOCK_i             : in std_logic; --25 MHz system clock 
        CLOCK_X2_i          : in std_logic;  
        RESET_i             : in std_logic; 
 
-- for SR implementation {START} 
-- signals going to pins on X2 
-- change/add/remove as needed  
-- also change cftp_x1.ucf file to match 
        T_BITOUT_TO_X2_o        : out std_logic; 
        T_RESET_TO_X2_o         : out std_logic; 
        T_CE_TO_X2_o            : out std_logic; -- clock enable to X2 
        T_DOUT_FROM_X2_i        : in std_logic; --_vector (15 downto 

0); 
        T_XOR_DOUT_FROM_X2_i    : in std_logic; -- comparing douts on 

X2 
        T_SUMDIFF_FROM_X2_i     : in std_logic_vector (15 downto 0); 
-- for SR implementation {END} 
 
--MLS 20051109 
        STALL               : in std_logic; 
--MLS END 20051109 
 
        DATA_o              : out std_logic_vector(7 downto 0); 
        DATA_i              : in std_logic_vector(7 downto 0); 
        PC104_WR_EN_o       : out std_logic; 
        PC104_WR_RDY_i      : in std_logic; 
        PC104_RD_RDY_i      : in std_logic; 
        PC104_RD_ACK_o      : out std_logic; 
 
        SM_CONFIG_RQST_o    : out std_logic; 
        SM_CONFIG_STATUS_i  : in std_logic; 
        SM_RB_RQST_o        : out std_logic; 
        SM_RB_STATUS_i      : in std_logic ); 
 
    end component; 
 
    component SELECTMAP_readback port ( 
 
        T_CLOCK_i           : in std_logic; 
        CLOCK_i             : in std_logic; 
        CLOCK_NOBUFG_i      : in std_logic; 
        RESET_i             : in std_logic; 
     
        T_CCLK_o            : out std_logic; 
        T_SELECTMAP_INIT_o  : out std_logic; 
        T_SELECTMAP_WRITE_o : out std_logic; 
        T_SELECTMAP_CS_o    : out std_logic; 
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        T_SELECTMAP_DATA_o  : out std_logic_vector(7 downto 0); 
        T_SELECTMAP_DATA_i  : in std_logic_vector(7 downto 0); 
 
        SM_RB_RQST_i        : in std_logic; 
        SM_RB_STATUS_o      : out std_logic; 
         
        T_FLASH_DATA_i      : in std_logic_vector(15 downto 0); 
        T_FLASH_ADDRESS_o   : out std_logic_vector(21 downto 0); 
 
        PC104_WR_RDY_i      : in std_logic; 
        PC104_WR_EN_o       : out std_logic; 
        DATA_o              : out std_logic_vector(7 downto 0) ); 
     
    end component; 
 
    component SELECTMAP_config port ( 
 
        T_CLOCK_i           : in std_logic; 
        RESET_i             : in std_logic; 
 
        T_SELECTMAP_INIT_o  : out std_logic; 
        T_SELECTMAP_WRITE_o : out std_logic; 
        T_SELECTMAP_CS_o    : out std_logic; 
        T_SELECTMAP_DATA_o  : out std_logic_vector(7 downto 0); 
 
        SM_CONFIG_RQST_i    : in std_logic; 
        SM_CONFIG_STATUS_o  : out std_logic; 
                   
        T_FLASH_DATA_i      : in std_logic_vector(15 downto 0); 
        T_FLASH_ADDRESS_o   : out std_logic_vector(21 downto 0) ); 
 
--MLS 20051109 
        PC104_WR_RDY_i      : in std_logic; 
        PC104_WR_EN_o       : out std_logic; 
        DATA_o              : out std_logic_vector(7 downto 0) ); 
--MLS END 20051109 
 
    end component; 
 
    component pc104Int port ( 
 
        T_CLOCK_i           : in std_logic; 
        RESET_i             : in std_logic; 
        T_Address_i         : in STD_LOGIC_VECTOR (9 downto 0); 
        T_IORead_i          : in STD_LOGIC; 
        T_IOWRITE_i         : in STD_LOGIC; 
        T_AEN_i             : in STD_LOGIC;         
        T_Data_io           : inout STD_LOGIC_VECTOR (7 downto 0); 
 
        DATA_o              : out std_logic_vector(7 downto 0); 
        DATA_RDY_o          : out std_logic; 
        DATA_ACK_i          : in  std_logic; 
 
        DATA_i              : in std_logic_vector(7 downto 0); 
        DATA_WREN_i         : in std_logic; 
        FIFO_FULL_o         : out std_logic ); 
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    end component; 
 
    component version port ( 
        Clk                 : in          std_logic; 
        rstn                : in        std_logic; 
        start               : in        std_logic; 
        Rdy                 : out        std_logic; 
        pc104_wr_rdy        : in        std_logic; 
        DOut                : out        std_logic_vector(7 downto 0); 
        Done                : out        std_logic ); 
    end component; 
 
-- clock/reset signals 
 
    signal s_clock          : std_logic; 
    signal s_clock_nobufg   : std_logic := '0'; 
 
    signal s_clock_X2       : std_logic; 
 
    signal s_reset          : std_logic := '1'; 
    signal s_reset_x2       : std_logic := '1'; 
    signal s_reset_d        : std_logic := '1'; 
-- MLS 20051109 
    signal stall                    : std_logic; 
    signal stall_d                    : std_logic; 
-- MLS 20051109 
 
--Signals for X2 Interface  
 
    signal ver_done_reset           : std_logic; 
--    signal x2_reset                 : std_logic; 
    signal X2_wr_rdy                : std_logic; 
    signal X2_data_to_pc104         : std_logic_vector(7 downto 0); 
    signal X2_data_to_pc104_wren    : std_logic; 
    signal X2_data_from_pc104_ack   : std_logic; 
    signal X2_sm_config_rqst        : std_logic; 
    signal X2_sm_rb_rqst            : std_logic; 
 
 
--Required signals for component version_0 
 
    signal version_reset            : std_logic; 
    signal version_start            : std_logic; 
    signal version_rdy              : std_logic; 
    signal version_wr_rdy           : std_logic; 
    signal version_out              : std_logic_vector (7 downto 0); 
    signal version_done             : std_logic; 
    signal version_done_d           : std_logic; 
 
 
-- Signals for PC/104 Interface 
 
    signal data_from_pc104_rdy      : std_logic; 
--    signal data_from_pc104_rdy_d    : std_logic; -- NOT USED 
    signal data_from_pc104_ack      : std_logic; 
    signal data_from_pc104          : std_logic_vector(7 downto 0); 
    signal data_to_pc104            : std_logic_vector(7 downto 0); 
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    signal data_to_pc104_wren       : std_logic; 
    signal pc104_fifo_full          : std_logic; 
 
 
-- Signals for Config module 
 
    signal selectmap_config_rqst        : STD_LOGIC; 
    signal config_active                : std_logic; 
--    signal config_active_d                : std_logic; -- NOT USED 
 
    signal flash_address_config         : std_logic_vector (21 downto 

0); 
 
    signal INIT_config                  : STD_LOGIC; 
    signal CS_config                    : STD_LOGIC; 
    signal WRITE_config                 : std_logic; 
    signal selectmap_write_data_config  : std_logic_vector(7 downto 0); 
 
-- MLS 20051109 
    signal SC_data_to_pc104                 : std_logic_vector(7 downto 

0); 
    signal SC_data_to_pc104_wren            : std_logic; 
    signal SC_wr_rdy                        : std_logic; 
-- MLS END 20051109 
 
-- Signals for Readback module 
 
    signal RB_data_to_pc104                 : std_logic_vector(7 downto 

0); 
    signal RB_data_to_pc104_wren            : std_logic; 
    signal RB_wr_rdy                        : std_logic; 
 
    signal flash_address_rb                 : std_logic_vector (21 

downto 0); 
 
    signal selectmap_readback_rqst          : STD_LOGIC; 
    signal readback_active                  : std_logic; 
 
    signal CCLK_readback                    : std_logic; 
    signal INIT_readback                    : STD_LOGIC; 
    signal CS_readback                      : STD_LOGIC; 
    signal WRITE_readback                   : std_logic; 
    signal selectmap_write_data_readback    : std_logic_vector(7 downto 

0); 
 
-- Selectmap signals 
 
    signal selectmap_write_data   : std_logic_vector(7 downto 0) := 

x"00"; --SIMULATION 
    signal s_selectmap_data_i     : std_logic_vector(7 downto 0); 
    signal s_selectmap_WRITE_o    : std_logic := '1'; --SIMULATION 
 
 
 
begin 
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    process(s_clock) 
    begin 
        if(s_clock'event and s_clock = '1') then 
            s_reset <= '0'; 
            s_reset_d <= s_reset; 
        end if; 
    end process; 
 
    ver_done_reset <= not version_done; 
 
--set mode pins on X2 to activate SelectMap mode 
T_x2_mode(0) <= '0'; 
T_x2_mode(1) <= '1'; 
T_x2_mode(2) <= '1'; 
 
T_RESET_TO_X2_o <= s_reset_x2; 
 
--signal assignments to pins 
 
-- T_RESET_TO_X2_o <= x2_reset; 
 
T_FLASH_RP_o <= not s_reset_d; 
T_FLASH_OE_o <= '0'; 
T_FLASH_WP_o <= '1'; 
T_FLASH_WE_o <= '1'; 
 
T_FLASH_ADDRESS_o <= flash_address_config(20 downto 0) when 

config_active = '1' else flash_address_rb(20 downto 0); 
T_FLASH_CE_A_o <= flash_address_config(21) when config_active = '1'  
    else flash_address_rb(21) when readback_active = '1'  
    else '1'; 
T_FLASH_CE_B_o <= not flash_address_config(21) when config_active = '1'  
    else not flash_address_rb(21) when readback_active = '1'  
    else '1'; 
 
s_selectmap_data_i <= T_SELECTMAP_DATA_io; 
T_SELECTMAP_DATA_io   <= selectmap_write_data         when 

s_selectmap_WRITE_o = '0'  else (others => 'Z'); 
 
selectmap_write_data<= selectmap_write_data_readback when 

readback_active = '1'    else 
selectmap_write_data_config; 

s_selectmap_WRITE_o <= WRITE_readback               when 
readback_active = '1'     else WRITE_config; 

T_SELECTMAP_INIT_o  <= INIT_readback                when 
readback_active = '1'     else INIT_config; 

T_SELECTMAP_CS_o    <= CS_readback                  when 
readback_active = '1'     else CS_config; 

 
T_SELECTMAP_WRITE_o   <= s_selectmap_WRITE_o; 
 
T_CCLK_o <= CCLK_readback; 
 
--MLS 20051109 
data_to_pc104       <= version_out when version_done = '0' else 

RB_data_to_pc104 when readback_active = '1' else 
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SC_data_to_pc104 when config_active = '1' else 
X2_data_to_pc104; 

data_to_pc104_wren  <= version_rdy when version_done = '0' else 
RB_data_to_pc104_wren when readback_active = '1' else 
SC_data_to_pc104_wren when config_active = '1' else 
X2_data_to_pc104_wren; 

--MLS END 20051109 
 
--MLS 20051109 
X2_wr_rdy <= (not pc104_fifo_full) and (not readback_active ) and (not 

config_active); 
RB_wr_rdy <= (not pc104_fifo_full) and (not config_active); 
SC_wr_rdy <= (not pc104_fifo_full) and (not readback_active) and 

(config_active); 
version_wr_rdy <= (not pc104_fifo_full) and (not readback_active ) and 

(not config_active) ; 
--MLS END 20051109 
 
-- MLS 20051109 
-- read commands from pc104 
process(s_clock, s_reset) 
begin 
    if (s_reset = '1') then 
        data_from_pc104_ack <= '0'; 
        stall <= '0'; 
        stall_d <= '0'; 
    elsif (s_clock'event and s_clock = '1') then 
        data_from_pc104_ack <= '0'; 
        stall_d <= stall; 
        if (data_from_pc104_rdy = '1') then 
            data_from_pc104_ack <= '1'; 
            if (data_from_pc104 = x"73") then --lowercase 's' 
                stall <= '1'; 
            elsif (data_from_pc104 = x"72") then --lowercase 'r' 
                stall <= '0'; 
            end if;     
        end if; 
    end if; 
end process; 
-- MLS END 20051109 
 
 
-- Process to choose whether we want to readback or configure But not 

both !!! 
process(s_clock, s_reset)  
begin 
    if (s_reset = '1') then 
 
        selectmap_readback_rqst <= '0'; 
        selectmap_config_rqst <= '0'; 
 
    elsif (s_clock'event and s_clock = '1') then 
 
        selectmap_readback_rqst <= '0'; 
        selectmap_config_rqst <= '0'; 
 
        version_done_d <= version_done; 
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-- MLS 20051109 
        if ( (X2_sm_rb_rqst = '1' or (stall = '0' and stall_d = '1')) 

and  version_done = '1' and config_active = '0' and 
selectmap_config_rqst  = '0' and stall = '0'  )   then 

            selectmap_readback_rqst <= '1'; 
        elsif ( (version_done = '1' and readback_active = '0' and 

selectmap_readback_rqst = '0' and stall = '0') and 
((version_done = '1' and version_done_d = '0') or ( 
X2_sm_config_rqst = '1' )  )  ) then 

            selectmap_config_rqst <= '1'; 
        end if; 
-- MLS END 20051109 
 
    end if; 
end process; 
 
 
    clockGen0: clockGen port map ( 
 
        T_CLOCK_i           => T_CLOCK_i,--50MHz oscillator 
 
        CLOCK_o             => s_clock, --system 25MHz clock 
 
-- for SR implementation {START} 
--if you need a different clock, change clockGen.vhd 
        CLOCK_X2_o          => s_clock_X2, -- 12.5 MHz clock  
        RESET_FROM_X2INT_i  => s_reset_x2, 
-- for SR implementation {END} 
 
        CLOCK_NOBUFG_o      => s_clock_nobufg -- for readback, setting 

CCLK 
 
    ); 
     
    pc104Int0: pc104Int port map ( 
 
        T_CLOCK_i       => s_clock,    --: in std_logic; 
        RESET_i         => s_reset, 
        T_Address_i     => T_Address_i,    --: in STD_LOGIC_VECTOR (9 

downto 0); 
        T_IORead_i      => T_IORead_i,    --: in STD_LOGIC; 
        T_IOWRITE_i     => T_IOWRITE_i,    --: in STD_LOGIC; 
        T_AEN_i         => T_AEN_i,    --: in STD_LOGIC;         
        T_Data_io       => T_Data_io,    --: inout STD_LOGIC_VECTOR (7 

downto 0) 
 
        DATA_o          => data_from_pc104,    --: out 

std_logic_vector(7 downto 0); 
        DATA_RDY_o      => data_from_pc104_rdy,    --: out std_logic; 
        DATA_ACK_i      => data_from_pc104_ack,    --: in  std_logic; 
        DATA_i          => data_to_pc104,    --: in std_logic_vector(7 

downto 0); 
        DATA_WREN_i     => data_to_pc104_wren,--: in std_logic; 
        FIFO_FULL_o     => pc104_fifo_full 
    ); 
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version_start <= '1'; 
version_reset <= not s_reset; 
 
version_0: version 
--Start: active high: when '1', ready to begin reading chars 
--Rdy: active high: when '1', data available from version_0 
--Done: active high: when '1', all chars have been read 
    port map ( 
        Clk             => s_clock,    --    : in          std_logic; 
        rstn            => version_reset,    --    : in        

std_logic; 
        start           => version_start,    --    : in        

std_logic; 
        Rdy             => version_rdy,    --    : out        

std_logic; 
        pc104_wr_rdy    => version_wr_rdy, -- in std_logic; 
        DOut            => version_out,    --    : out        

std_logic_vector(7 downto 0); 
        Done            => version_done    --    : out        

std_logic; 
    ); 
 
    SELECTMAP_config0: selectmap_config port map ( 
 
        T_CLOCK_i           => s_clock,         --: in std_logic; 
        RESET_i             => s_reset,         --: in std_logic; 
 
        T_SELECTMAP_INIT_o  => INIT_config,      --: out std_logic; 
        T_SELECTMAP_WRITE_o => WRITE_config,     --: out std_logic; 
        T_SELECTMAP_CS_o    => CS_config,        --: out std_logic; 
        T_SELECTMAP_DATA_o  => selectmap_write_data_config,      --: 

out std_logic_vector(7 downto 0); 
 
        SM_CONFIG_RQST_i    => selectmap_config_rqst, --: in std_logic; 
        SM_CONFIG_STATUS_o  => config_active,       --: out std_logic; 
                   
        T_FLASH_DATA_i      => T_FLASH_DATA_i,   --: in 

std_logic_vector(15 downto 0); 
        T_FLASH_ADDRESS_o   => flash_address_config --: out 

std_logic_vector(20 downto 0) ); 
 
    ); 
 
    selectmap_readback0: SELECTMAP_readback port map ( 
 
        T_CLOCK_i           => T_CLOCK_i, 
        CLOCK_i             => s_clock,           --: in std_logic; 
        CLOCK_NOBUFG_i      => s_clock_nobufg, 
        RESET_i             => s_reset,             --: in std_logic; 
     
        T_CCLK_o            => CCLK_readback,       --: out std_logic; 
        T_SELECTMAP_INIT_o  => INIT_readback,       --: out std_logic; 
        T_SELECTMAP_WRITE_o => WRITE_readback,      --: out std_logic; 
        T_SELECTMAP_CS_o    => CS_readback,         --: out std_logic; 
        T_SELECTMAP_DATA_o  => selectmap_write_data_readback,--: out 

std_logic_vector(7 downto 0); 
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        T_SELECTMAP_DATA_i  => s_selectmap_data_i,      --: in 
std_logic_vector(7 downto 0); 

 
        SM_RB_RQST_i        => selectmap_readback_rqst, --: in 

std_logic; 
        SM_RB_STATUS_o      => readback_active,     --: out std_logic; 
         
        T_FLASH_DATA_i      => T_FLASH_DATA_i,      --: in 

std_logic_vector(15 downto 0); 
        T_FLASH_ADDRESS_o   => flash_address_rb,    --: out 

std_logic_vector(20 downto 0); 
 
        PC104_WR_RDY_i      => RB_wr_rdy,           --: in std_logic; 
        PC104_WR_EN_o       => RB_data_to_pc104_wren,--: out std_logic; 
        DATA_o              => RB_data_to_pc104     --: out 

std_logic_vector(7 downto 0) ); 
     
    ); 
 
 
    x2Int0 : x2Int port map ( 
 
        CLOCK_i             => s_clock,         --: in std_logic; 
        CLOCK_X2_i          => s_clock_X2,      -- 12.5MHz clock for 

Cordic 
        RESET_i             => ver_done_reset,  --: in std_logic; 
 
-- for SR implementation 
-- signals going to pins on X2 
-- change/add/remove as needed  
-- also change cftp_x1.ucf file to match 
        T_BITOUT_TO_X2_o        => T_BITOUT_TO_X2_o,   -- : out 

std_logic; 
        T_RESET_TO_X2_o         => s_reset_x2, 
        T_CE_TO_X2_o            => T_CE_TO_X2_o,   -- : out std_logic; 
        T_DOUT_FROM_X2_i        => T_DOUT_FROM_X2_i,   -- : in 

std_logic; 
        T_XOR_DOUT_FROM_X2_i    => T_XOR_DOUT_FROM_X2_i, -- : in 

std_logic; 
        T_SUMDIFF_FROM_X2_i     => T_SUMDIFF_FROM_X2_i,  -- : in 

std_logic_vector(31 downto 0); 
-- for SR implementation 
 
        DATA_o              => X2_data_to_pc104,            -- : out 

std_logic_vector(7 downto 0); 
        DATA_i              => data_from_pc104,             -- : in 

std_logic_vector(7 downto 0); 
        PC104_WR_EN_o       => X2_data_to_pc104_wren,       -- : out 

std_logic; 
        PC104_WR_RDY_i      => X2_wr_rdy,             -- : in 

std_logic; 
        PC104_RD_RDY_i      => data_from_pc104_rdy,         -- : in 

std_logic; 
        PC104_RD_ACK_o      => X2_data_from_pc104_ack,      -- : out 

std_logic; 
 
        SM_CONFIG_RQST_o    => X2_sm_config_rqst,   -- : out std_logic; 
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        SM_CONFIG_STATUS_i  => config_active,          -- : in 
std_logic; 

        SM_RB_RQST_o        => X2_sm_rb_rqst,       -- : out std_logic; 
        SM_RB_STATUS_i      => readback_active         -- : in 

std_logic  
 
    ); 
 
  
end rtl; 
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L. X1 SHIFT REGISTER CONSTRAINT FILE (VIRTEX I) 
(After [17]) 

# Pin assignments for X1 
# 
# double-check all pin assignments??? 
# these numbers derived from a Mar 2004 diagram 
# 
 
# clock is constrained at bottom of this file!!! 
# system clock, pin 199 on X1 
#NET "CLOCK" LOC = "P199"; 
#NET "CLOCK" PERIOD = 40; 
# NET "s_clock" PERIOD = 80; 
# the line above gave errors during "Translate"??? 
 
# signals to/from X2 
NET "T_BITOUT_TO_X2_o" LOC = "p153";  # X1_X2_AUX<0> 
NET "T_CE_TO_X2_o" LOC = "p151";  # X1_X2_AUX<1> 
NET "T_RESET_TO_X2_o" LOC = "p150";  # X1_X2_AUX<2> 
# NET "XXX" LOC = "p149";  # X1_X2_AUX<3> 
# NET "XXX" LOC = "p147";  # X1_X2_AUX<4> 
# NET "XXX" LOC = "p146";  # X1_X2_AUX<5> 
# NET "XXX" LOC = "p145";  # X1_X2_AUX<6> 
# NET "XXX" LOC = "p144";  # X1_X2_AUX<7> 
# NET "XXX" LOC = "p135";  # X1_X2_AUX<8> 
# NET "XXX" LOC = "p134";  # X1_X2_AUX<9> 
NET "T_SUMDIFF_FROM_X2_i<0>" LOC = "p132";  # X1_X2_AUX<10> 
NET "T_DOUT_FROM_X2_i" LOC = "p127";  # X1_X2_AUX<11> 
NET "T_SUMDIFF_FROM_X2_i<1>" LOC = "p126";  # X1_X2_AUX<12> 
NET "T_XOR_DOUT_FROM_X2_i" LOC = "p120";  # X1_X2_AUX<13> 
NET "T_SUMDIFF_FROM_X2_i<2>" LOC = "p119";  # X1_X2_AUX<14> 
#NET "T_DOUT_FROM_X2_i<2>" LOC = "p112";  # X1_X2_AUX<15> 
NET "T_SUMDIFF_FROM_X2_i<3>" LOC = "p111";  # X1_X2_AUX<16> 
#NET "T_DOUT_FROM_X2_i<3>" LOC = "p110";  # X1_X2_AUX<17> 
NET "T_SUMDIFF_FROM_X2_i<4>" LOC = "p109";  # X1_X2_AUX<18> 
#NET "T_DOUT_FROM_X2_i<4>" LOC = "p108";  # X1_X2_AUX<19> 
NET "T_SUMDIFF_FROM_X2_i<5>" LOC = "p107";  # X1_X2_AUX<20> 
#NET "T_DOUT_FROM_X2_i<5>" LOC = "p105";  # X1_X2_AUX<21> 
NET "T_SUMDIFF_FROM_X2_i<6>" LOC = "p104";  # X1_X2_AUX<22> 
#NET "T_DOUT_FROM_X2_i<6>" LOC = "p103";  # X1_X2_AUX<23> 
NET "T_SUMDIFF_FROM_X2_i<7>" LOC = "p102";  # X1_X2_AUX<24> 
#NET "T_DOUT_FROM_X2_i<7>" LOC = "p101";  # X1_X2_AUX<25> 
NET "T_SUMDIFF_FROM_X2_i<8>" LOC = "p98";  # X1_X2_AUX<26> 
#NET "T_DOUT_FROM_X2_i<8>" LOC = "p97";  # X1_X2_AUX<27> 
NET "T_SUMDIFF_FROM_X2_i<9>" LOC = "p96";  # X1_X2_AUX<28> 
#NET "T_DOUT_FROM_X2_i<9>" LOC = "p94";  # X1_X2_AUX<29> 
NET "T_SUMDIFF_FROM_X2_i<10>" LOC = "p93";  # X1_X2_AUX<30> 
#NET "T_DOUT_FROM_X2_i<10>" LOC = "p92";  # X1_X2_AUX<31> 
NET "T_SUMDIFF_FROM_X2_i<11>" LOC = "p91";  # X1_X2_AUX<32> 
#NET "T_DOUT_FROM_X2_i<11>" LOC = "p90";  # X1_X2_AUX<33> 
NET "T_SUMDIFF_FROM_X2_i<12>" LOC = "p89";  # X1_X2_AUX<34> 
#NET "T_DOUT_FROM_X2_i<12>" LOC = "p88";  # X1_X2_AUX<35> 
NET "T_SUMDIFF_FROM_X2_i<13>" LOC = "p82";  # X1_X2_AUX<36> 
#NET "T_DOUT_FROM_X2_i<13>" LOC = "p81";  # X1_X2_AUX<37> 
NET "T_SUMDIFF_FROM_X2_i<14>" LOC = "p80";  # X1_X2_AUX<38> 
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#NET "T_DOUT_FROM_X2_i<14>" LOC = "p79";  # X1_X2_AUX<39> 
NET "T_SUMDIFF_FROM_X2_i<15>" LOC = "p78";  # X1_X2_AUX<40> 
#NET "T_DOUT_FROM_X2_i<15>" LOC = "p77";  # X1_X2_AUX<41> 
# NET "XXX" LOC = "p75";  # X1_X2_AUX<42> 
# NET "XXX" LOC = "p74";  # X1_X2_AUX<43> 
# NET "XXX" LOC = "p71";  # X1_X2_AUX<44> 
 
#PACE: Start of Constraints generated by PACE 
 
#PACE: Start of PACE I/O Pin Assignments 
#Flash Interface Signals 
NET "T_Flash_data_i<0>" LOC = "P207";                    
NET "T_Flash_data_i<1>" LOC = "P209";            
NET "T_Flash_data_i<2>" LOC = "P212";        
NET "T_Flash_data_i<3>" LOC = "P216";            
NET "T_Flash_data_i<4>" LOC = "P218";            
NET "T_Flash_data_i<5>" LOC = "P220";            
NET "T_Flash_data_i<6>" LOC = "P223";        
NET "T_Flash_data_i<7>" LOC = "P226";    
NET "T_Flash_data_i<8>" LOC = "P208";    
NET "T_Flash_data_i<9>" LOC = "P211";   
NET "T_Flash_data_i<10>" LOC = "P213";           
NET "T_Flash_data_i<11>" LOC = "P217";       
NET "T_Flash_data_i<12>" LOC = "P219";   
NET "T_Flash_data_i<13>" LOC = "P222";   
NET "T_Flash_data_i<14>" LOC = "P224";       
NET "T_Flash_data_i<15>" LOC = "P225";   
NET "T_Flash_address_o<0>" LOC = "P206";     
NET "T_Flash_address_o<1>" LOC = "P205"; 
NET "T_Flash_address_o<2>" LOC = "P204";     
NET "T_Flash_address_o<3>" LOC = "P198";     
NET "T_Flash_address_o<4>" LOC = "P197";     
NET "T_Flash_address_o<5>" LOC = "P196"; 
NET "T_Flash_address_o<6>" LOC = "P195";         
NET "T_Flash_address_o<7>" LOC = "P194";     
NET "T_Flash_address_o<8>" LOC = "P182";         
NET "T_Flash_address_o<9>" LOC = "P183";         
NET "T_Flash_address_o<10>" LOC = "P184";        
NET "T_Flash_address_o<11>" LOC = "P185";        
NET "T_Flash_address_o<12>" LOC = "P188";        
NET "T_Flash_address_o<13>" LOC = "P189";        
NET "T_Flash_address_o<14>" LOC = "P190";        
NET "T_Flash_address_o<15>" LOC = "P192";        
NET "T_Flash_address_o<16>" LOC = "P193";        
NET "T_Flash_address_o<17>" LOC = "P177";        
NET "T_Flash_address_o<18>" LOC = "P178";        
NET "T_Flash_address_o<19>" LOC = "P179";        
NET "T_Flash_address_o<20>" LOC = "P181";        
NET "T_Flash_WE_o" LOC = "P165";             
NET "T_Flash_RP_o" LOC = "P166";             
NET "T_Flash_WP_o" LOC = "P167";                 
NET "T_Flash_CE_A_o" LOC = "P164"; 
NET "T_Flash_CE_B_o" LOC = "P125"; # doesn't do anything! 
NET "T_Flash_OE_o" LOC = "P162";                 
 
#PC/104 Interface Signals 
NET "T_Data_io<0>" LOC = "P11";                 #ISA Data Bit 0 p. 11     
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NET "T_Data_io<1>" LOC = "P10";         #ISA Data Bit 1 p. 10 
NET "T_Data_io<2>" LOC = "P9";          #ISA Data Bit 2 p. 09 
NET "T_Data_io<3>" LOC = "P7";          #ISA Data Bit 3 p. 07 
NET "T_Data_io<4>" LOC = "P6";          #ISA Data Bit 4 p. 06 
NET "T_Data_io<5>" LOC = "P5";              #ISA Data Bit 5 p. 05 
NET "T_Data_io<6>" LOC = "P4";              #ISA Data Bit 6 p. 04 
NET "T_Data_io<7>" LOC = "P3";              #ISA Data Bit 7 p. 03 
NET "T_Address_i<0>" LOC = "P47";       #ISA Address 0      p. 47 
NET "T_Address_i<1>" LOC = "P46";       #ISA Address 1      p. 46 
NET "T_Address_i<2>" LOC = "P45";       #ISA Address 2      p. 45 
NET "T_Address_i<3>" LOC = "P39";       #ISA Address 3      p. 39  
NET "T_Address_i<4>" LOC = "P36";       #ISA Address 4      p. 36 
NET "T_Address_i<5>" LOC = "P34";       #ISA Address 5      p. 34 
NET "T_Address_i<6>" LOC = "P32";       #ISA Address 6      p. 32 
NET "T_Address_i<7>" LOC = "P29";       #ISA Address 7      p. 29 
NET "T_Address_i<8>" LOC = "P25";       #ISA Address 8      p. 25 
NET "T_Address_i<9>" LOC = "P23";       #ISA Address 9      p. 23 
NET "T_IORead_i" LOC = "P19";                   #IO Read        p. 19  
NET "T_IOWrite_i" LOC = "P17";              #IO Write       p. 17  
NET "T_AEN_i" LOC = "P13";                      #Address Enable p. 13 
 
# Selectmap interface signals 
NET "T_CCLK_o" LOC = "P69";                     #Drive X2's CCLK pin 
NET "T_SELECTMAP_INIT_o" LOC = "P117";          #Drive X2's INIT pin 
NET "T_SELECTMAP_WRITE_o" LOC = "P176";         #Drive X2's WRITE pin 
NET "T_SELECTMAP_CS_o" LOC = "P175";            #Drive X2's CS pin 
 
# MLS swap pins so D(0) is LSB  
NET "T_SELECTMAP_DATA_io<7>" LOC = "P169"; 
NET "T_SELECTMAP_DATA_io<6>" LOC = "P128"; 
NET "T_SELECTMAP_DATA_io<5>" LOC = "P131"; 
NET "T_SELECTMAP_DATA_io<4>" LOC = "P137"; 
NET "T_SELECTMAP_DATA_io<3>" LOC = "P148"; 
NET "T_SELECTMAP_DATA_io<2>" LOC = "P155"; 
NET "T_SELECTMAP_DATA_io<1>" LOC = "P158"; 
NET "T_SELECTMAP_DATA_io<0>" LOC = "P168"; 
#NET "SELECTMAP_BUSY_i" LOC = "P118"; 
 
NET "T_clock_i" LOC = "P199"; 
NET "T_x2_mode<0>" LOC = "P160"; 
NET "T_x2_mode<1>" LOC = "P159"; 
NET "T_x2_mode<2>" LOC = "P161"; 
NET "t_clock_i" PERIOD = 20; 
NET "s_clock" PERIOD = 40; 
NET "s_clock_x2" PERIOD = 80; 
 
#NET "T_SELECTMAP_DATA_io<7>" TNM="smpins"; 
#NET "T_SELECTMAP_DATA_io<6>" TNM="smpins"; 
#NET "T_SELECTMAP_DATA_io<5>" TNM="smpins"; 
#NET "T_SELECTMAP_DATA_io<4>" TNM="smpins"; 
#NET "T_SELECTMAP_DATA_io<3>" TNM="smpins"; 
#NET "T_SELECTMAP_DATA_io<2>" TNM="smpins"; 
#NET "T_SELECTMAP_DATA_io<1>" TNM="smpins"; 
#NET "T_SELECTMAP_DATA_io<0>" TNM="smpins"; 
#NET "T_SELECTMAP_INIT_o" TNM="smpins"; 
#NET "T_SELECTMAP_WRITE_o" TNM="smpins"; 
#NET "T_SELECTMAP_CS_o" TNM="smpins"; 
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#TIMESPEC "TS_1" = FROM : FFS : TO : PADS : 5 ns; 
 
#TIMEGRP "smpins" OFFSET=OUT 5 AFTER "s_clock"; 
#TIMEGRP "smpins" OFFSET=IN 5 BEFORE "s_clock"; 
 
 
# "from_x2..." and "busy_out" and "SELECTMAP_BUSY_i" have been 

commented out!!! 
#The X1_X2_AUX pins are defined at top of file!!! 
#NET "busy_out" LOC = "P49";    #io pin 0 
#NET "output_from_x2_8" LOC = "P64";    #io pin 10 
#NET "TP1" LOC = "P70";       #io pin 15  
#NET "TP1" FAST ; 
#NET "TP2" LOC = "P65";      #io pin 11 
#NET "TP2" FAST ; 
#NET "TP3" LOC = "P64";      #io pin 10 
#NET "TP3" FAST ; 
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M. X1 SHIFT REGISTER CONSTRAINT FILE (VIRTEX II) 
(After [17]) 

# Pin checks, X1 Virtex1 Part on CFTP1 vs CFTP2: 
 
# PC/104: 
# DATA(7 downto 0) same 
# ADDR(9 downto 0) same 
# IOW, IOR, AEN same 
 
# FLASH: 
# DATA(15 downto 0) same 
# ADDR(20 downto 0) same 
# WE, WP, RP, CE_A, CE_B, OE same 
# NOTE: Added second flash to CFTP2. FLASH_CE_B added  
#       to P125. Just have this pin on both boards,  
#       P125 isn't connected to anything on CFTP1 
# CFTP2 board has VPPEN on pin 60!!!! need to pull low 
#     in order to erase or write flash!!! 
#     new CFTP1 board will have similar pin, old CFTP1  
#     does not (EN always pulled active on Flash) 
# CFTP2 board also has a different Flash device,  
#     auto-locking blocks. schem says both CFTP1 and CFTP2 
#     have C3 device, but CFTP1 actually has B3 device. 
#     CFTP2 device is top boot, CFTP1 device is bottom boot 
 
# X1/X2 AUX: 
# double checked pin numbers, looks ok 
# all pins are the same between CFTP1 and CFTP2 board,  
# *****except X1/X2 Aux 42 is P75 on CFTP1 and P125 on CFTP2 
# *****MLS 20051026: X1/X2 Aux 42 (P125) has been tied to CE pin  
#       for Flash_B!!  DO NOT USE AS AUX PIN!!! 
#    CFTP2 has no X1/X2 Aux 43 or 44 (P74 and P51 on  
#    CFTP1, respectively) 
 
# SELECTMAP: 
# Drive X2's CCLK:  
#   on old CFTP1: jumpered P69 to X2's CCLK 
#   on CFTP2: Dedicated User I/O on X1 (P65) 
#       connected to X2's CCLK  
# Drive X2's INIT, WRITE, and CS pins 
#   on old CFTP1: use X1's INIT(P117), WR(P176), CS(P175)  
#       pins (turn user I/O after config) 
#   on CFTP2: use dedicated I/O (P124, P63, P64, respectively) 
# Drive X2's Data lines 
#   on old CFTP1: connect D0 on X1 to D7 on X2, D1 to D6, etc 
#       (turn user io after config) 
#       In ucf file, I swap values because D7 is the LSB  
#       in Selectmap mode, and I want D0 to be the LSB,  
#       so I set it up so my signal SELECTMAP_DATA_io(0) is 
#       connected to the actually X2_DATA(7) pin, etc 
#   on CFTP2: dedicated user io on X1 connected to X2's pins 
#       same thing with MSB/LSB swap 
#       D0=68,D1=69,D2=70,D3=71,D4=74,D5=75,D6=121,D7=122 
 
# MODE PINS:  SAME 
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# CLOCK:  SAME (oscillator on P199 on X1 FPGA) 
 
# Pin assignments for X1, compatible with Virtex-II 
# 
# double-check all pin assignments??? 
# these numbers derived from a May 2005 diagram 
 
# clock is constrained at bottom of this file!!! 
# system clock oscillator, pin 199 on X1 
# NET "T_CLOCK_i" LOC = "P199"; 
# NET "T_CLOCK_i" PERIOD = 40; 
# NET "s_clock" PERIOD = 80; 
# the line above gave errors during "Translate"??? 
 
# START signals to/from X2 
NET "T_BITOUT_TO_X2_o" LOC = "p153";  # X1_X2_AUX<0> 
NET "T_CE_TO_X2_o" LOC = "p151";  # X1_X2_AUX<1> 
NET "T_RESET_TO_X2_o" LOC = "p150";  # X1_X2_AUX<2> 
# NET "XXX" LOC = "p149";  # X1_X2_AUX<3> 
# NET "XXX" LOC = "p147";  # X1_X2_AUX<4> 
# NET "XXX" LOC = "p146";  # X1_X2_AUX<5> 
# NET "XXX" LOC = "p145";  # X1_X2_AUX<6> 
# NET "XXX" LOC = "p144";  # X1_X2_AUX<7> 
# NET "XXX" LOC = "p135";  # X1_X2_AUX<8> 
# NET "XXX" LOC = "p134";  # X1_X2_AUX<9> 
NET "T_SUMDIFF_FROM_X2_i<0>" LOC = "p132";  # X1_X2_AUX<10> 
NET "T_DOUT_FROM_X2_i" LOC = "p127";  # X1_X2_AUX<11> 
NET "T_SUMDIFF_FROM_X2_i<1>" LOC = "p126";  # X1_X2_AUX<12> 
NET "T_XOR_DOUT_FROM_X2_i" LOC = "p120";  # X1_X2_AUX<13> 
NET "T_SUMDIFF_FROM_X2_i<2>" LOC = "p119";  # X1_X2_AUX<14> 
#NET "T_DOUT_FROM_X2_i<2>" LOC = "p112";  # X1_X2_AUX<15> 
NET "T_SUMDIFF_FROM_X2_i<3>" LOC = "p111";  # X1_X2_AUX<16> 
#NET "T_DOUT_FROM_X2_i<3>" LOC = "p110";  # X1_X2_AUX<17> 
NET "T_SUMDIFF_FROM_X2_i<4>" LOC = "p109";  # X1_X2_AUX<18> 
#NET "T_DOUT_FROM_X2_i<4>" LOC = "p108";  # X1_X2_AUX<19> 
NET "T_SUMDIFF_FROM_X2_i<5>" LOC = "p107";  # X1_X2_AUX<20> 
#NET "T_DOUT_FROM_X2_i<5>" LOC = "p105";  # X1_X2_AUX<21> 
NET "T_SUMDIFF_FROM_X2_i<6>" LOC = "p104";  # X1_X2_AUX<22> 
#NET "T_DOUT_FROM_X2_i<6>" LOC = "p103";  # X1_X2_AUX<23> 
NET "T_SUMDIFF_FROM_X2_i<7>" LOC = "p102";  # X1_X2_AUX<24> 
#NET "T_DOUT_FROM_X2_i<7>" LOC = "p101";  # X1_X2_AUX<25> 
NET "T_SUMDIFF_FROM_X2_i<8>" LOC = "p98";  # X1_X2_AUX<26> 
#NET "T_DOUT_FROM_X2_i<8>" LOC = "p97";  # X1_X2_AUX<27> 
NET "T_SUMDIFF_FROM_X2_i<9>" LOC = "p96";  # X1_X2_AUX<28> 
#NET "T_DOUT_FROM_X2_i<9>" LOC = "p94";  # X1_X2_AUX<29> 
NET "T_SUMDIFF_FROM_X2_i<10>" LOC = "p93";  # X1_X2_AUX<30> 
#NET "T_DOUT_FROM_X2_i<10>" LOC = "p92";  # X1_X2_AUX<31> 
NET "T_SUMDIFF_FROM_X2_i<11>" LOC = "p91";  # X1_X2_AUX<32> 
#NET "T_DOUT_FROM_X2_i<11>" LOC = "p90";  # X1_X2_AUX<33> 
NET "T_SUMDIFF_FROM_X2_i<12>" LOC = "p89";  # X1_X2_AUX<34> 
#NET "T_DOUT_FROM_X2_i<12>" LOC = "p88";  # X1_X2_AUX<35> 
NET "T_SUMDIFF_FROM_X2_i<13>" LOC = "p82";  # X1_X2_AUX<36> 
#NET "T_DOUT_FROM_X2_i<13>" LOC = "p81";  # X1_X2_AUX<37> 
NET "T_SUMDIFF_FROM_X2_i<14>" LOC = "p80";  # X1_X2_AUX<38> 
#NET "T_DOUT_FROM_X2_i<14>" LOC = "p79";  # X1_X2_AUX<39> 
NET "T_SUMDIFF_FROM_X2_i<15>" LOC = "p78";  # X1_X2_AUX<40> 
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#NET "T_DOUT_FROM_X2_i<15>" LOC = "p77";  # X1_X2_AUX<41> 
# END signals to/from X2 
#NET "CE for FLASH B on CFTP2 Board!!!!" LOC = "p125";  # DO NOT USE!!! 
# NET "XXX" LOC = "XXX";  # X1_X2_AUX<43> not on Virtex-II board 
# NET "XXX" LOC = "XXX";  # X1_X2_AUX<44> not on Virtex-II board 
 
#PACE: Start of Constraints generated by PACE 
 
#PACE: Start of PACE I/O Pin Assignments 
#Flash Interface Signals 
NET "T_Flash_data_i<0>" LOC = "P207";                    
NET "T_Flash_data_i<1>" LOC = "P209";            
NET "T_Flash_data_i<2>" LOC = "P212";        
NET "T_Flash_data_i<3>" LOC = "P216";            
NET "T_Flash_data_i<4>" LOC = "P218";            
NET "T_Flash_data_i<5>" LOC = "P220";            
NET "T_Flash_data_i<6>" LOC = "P223";        
NET "T_Flash_data_i<7>" LOC = "P226";    
NET "T_Flash_data_i<8>" LOC = "P208";    
NET "T_Flash_data_i<9>" LOC = "P211";   
NET "T_Flash_data_i<10>" LOC = "P213";           
NET "T_Flash_data_i<11>" LOC = "P217";       
NET "T_Flash_data_i<12>" LOC = "P219";   
NET "T_Flash_data_i<13>" LOC = "P222";   
NET "T_Flash_data_i<14>" LOC = "P224";       
NET "T_Flash_data_i<15>" LOC = "P225";   
NET "T_Flash_address_o<0>" LOC = "P206";     
NET "T_Flash_address_o<1>" LOC = "P205"; 
NET "T_Flash_address_o<2>" LOC = "P204";     
NET "T_Flash_address_o<3>" LOC = "P198";     
NET "T_Flash_address_o<4>" LOC = "P197";     
NET "T_Flash_address_o<5>" LOC = "P196"; 
NET "T_Flash_address_o<6>" LOC = "P195";         
NET "T_Flash_address_o<7>" LOC = "P194";     
NET "T_Flash_address_o<8>" LOC = "P182";         
NET "T_Flash_address_o<9>" LOC = "P183";         
NET "T_Flash_address_o<10>" LOC = "P184";        
NET "T_Flash_address_o<11>" LOC = "P185";        
NET "T_Flash_address_o<12>" LOC = "P188";        
NET "T_Flash_address_o<13>" LOC = "P189";        
NET "T_Flash_address_o<14>" LOC = "P190";        
NET "T_Flash_address_o<15>" LOC = "P192";        
NET "T_Flash_address_o<16>" LOC = "P193";        
NET "T_Flash_address_o<17>" LOC = "P177";        
NET "T_Flash_address_o<18>" LOC = "P178";        
NET "T_Flash_address_o<19>" LOC = "P179";        
NET "T_Flash_address_o<20>" LOC = "P181";        
NET "T_Flash_WE_o" LOC = "P165";             
NET "T_Flash_RP_o" LOC = "P166";             
NET "T_Flash_WP_o" LOC = "P167";                 
NET "T_Flash_CE_A_o" LOC = "P164";               
NET "T_Flash_CE_B_o" LOC = "P125";               
NET "T_Flash_OE_o" LOC = "P162";                 
 
#PC/104 Interface Signals 
NET "T_Data_io<0>" LOC = "P11";                 #ISA Data Bit 0 p. 11 
NET "T_Data_io<1>" LOC = "P10";         #ISA Data Bit 1 p. 10 
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NET "T_Data_io<2>" LOC = "P9";          #ISA Data Bit 2 p. 09 
NET "T_Data_io<3>" LOC = "P7";          #ISA Data Bit 3 p. 07 
NET "T_Data_io<4>" LOC = "P6";          #ISA Data Bit 4 p. 06 
NET "T_Data_io<5>" LOC = "P5";              #ISA Data Bit 5 p. 05 
NET "T_Data_io<6>" LOC = "P4";              #ISA Data Bit 6 p. 04 
NET "T_Data_io<7>" LOC = "P3";              #ISA Data Bit 7 p. 03 
NET "T_Address_i<0>" LOC = "P47";       #ISA Address 0      p. 47 
NET "T_Address_i<1>" LOC = "P46";       #ISA Address 1      p. 46 
NET "T_Address_i<2>" LOC = "P45";       #ISA Address 2      p. 45 
NET "T_Address_i<3>" LOC = "P39";       #ISA Address 3      p. 39  
NET "T_Address_i<4>" LOC = "P36";       #ISA Address 4      p. 36 
NET "T_Address_i<5>" LOC = "P34";       #ISA Address 5      p. 34 
NET "T_Address_i<6>" LOC = "P32";       #ISA Address 6      p. 32 
NET "T_Address_i<7>" LOC = "P29";       #ISA Address 7      p. 29 
NET "T_Address_i<8>" LOC = "P25";       #ISA Address 8      p. 25 
NET "T_Address_i<9>" LOC = "P23";       #ISA Address 9      p. 23 
NET "T_IORead_i" LOC = "P19";                   #IO Read        p. 19  
NET "T_IOWrite_i" LOC = "P17";              #IO Write       p. 17  
NET "T_AEN_i" LOC = "P13";                      #Address Enable p. 13 
 
# Selectmap interface signals 
NET "T_CCLK_o" LOC = "P65"; #Drive X2's CCLK pin, CFTP2 ok MLS 
NET "T_SELECTMAP_INIT_o" LOC = "P124"; #Drive X2's INIT pin, CFTP2 ok 
NET "T_SELECTMAP_WRITE_o" LOC = "P63"; #Drive X2's WRITE pin, CFTP2 ok 
NET "T_SELECTMAP_CS_o" LOC = "P64"; #Drive X2's CS pin, CFTP2 ok MLS 
 
# MLS swap pins so D(0) is LSB 
NET "T_SELECTMAP_DATA_io<7>" LOC = "P68"; #Drive X2's D0, CFTP2 ok MLS 
NET "T_SELECTMAP_DATA_io<6>" LOC = "P69"; #Drive X2's D1, CFTP2 ok MLS 
NET "T_SELECTMAP_DATA_io<5>" LOC = "P70"; #Drive X2's D2, CFTP2 ok MLS 
NET "T_SELECTMAP_DATA_io<4>" LOC = "P71"; #Drive X2's D3, CFTP2 ok MLS 
NET "T_SELECTMAP_DATA_io<3>" LOC = "P74"; #Drive X2's D4, CFTP2 ok MLS 
NET "T_SELECTMAP_DATA_io<2>" LOC = "P75"; #Drive X2's D5, CFTP2 ok MLS 
NET "T_SELECTMAP_DATA_io<1>" LOC = "P121"; #Drive X2's D6, CFTP2 ok MLS 
NET "T_SELECTMAP_DATA_io<0>" LOC = "P122"; #Drive X2's D7, CFTP2 ok MLS 
 
#NET "SELECTMAP_BUSY_i" LOC = "P118"; 
NET "T_clock_i" LOC = "P199"; 
NET "T_x2_mode<0>" LOC = "P160"; 
NET "T_x2_mode<1>" LOC = "P159"; 
NET "T_x2_mode<2>" LOC = "P161"; 
NET "t_clock_i" PERIOD = 20; 
NET "s_clock" PERIOD = 40; 
NET "s_clock_X2" PERIOD = 80; 
 
# "busy_out" and "SELECTMAP_BUSY_i" have been commented out!!! 
 
#The X1_X2_AUX pins are defined at top of file!!! 
#NET "busy_out" LOC = "P49";    #io pin 0 
#NET "output_from_x2_8" LOC = "P64";    #io pin 10 
#NET "TP1" LOC = "P70";       #io pin 15  
#NET "TP1" FAST ; 
#NET "TP2" LOC = "P65";      #io pin 11 
#NET "TP2" FAST ; 
#NET "TP3" LOC = "P64";      #io pin 10 
#NET "TP3" FAST ; 
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N. SHIFT REGISTER MODULE WITH SRL16E MACRO AND FLIP-FLOPS 
------------------------------------------------- 
-- filename: sr_testing.vhd 
-- author: James Coudeyras (2005) 
-- 
-- This file is for the SRL16E macro plus flip-flop (SRL+1) 
-- used for X2 which will be used as the initial test 
-- for proton radiation testing at UC-Davis. 
-- 
------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity sr_testing is 
 
    generic ( WIDTH : integer := 2040); -- should yield 120 SRL16/FF 

pairs 
 -- SR length (2400 for C1, 300 for C1-no SRL, , 12000 

for C2) 
 
    Port  ( clock       : in std_logic; 
        reset           : in std_logic; 
        ce              : in std_logic; 
        din             : in std_logic; 
        dout            : out std_logic; 
        sumdiff         : out std_logic ); 
 
end sr_testing; 
 
architecture sr_sequence of sr_testing is 
    signal reg_a    : std_logic_vector (WIDTH-1 downto 0); 
    signal reg_b    : std_logic_vector (WIDTH-1 downto 0); 
 
begin 
 
process (clock, reset) 
begin 
    if (reset = '1') then 
 
        sumdiff <= '0'; 
        dout <=  '0'; 
 
    elsif (clock'event and clock='1') then 
 
        sumdiff <= '0'; 
 
        if ce='1' then 
            reg_a <= din & reg_a(WIDTH-1 downto 1); 
            reg_b <= din & reg_b(WIDTH-1 downto 1); 
        end if; 
-- LABEL1: 
        for I in 1 to (WIDTH/17) loop 
            if ( (reg_a((I-1)*17) xor reg_b((I-1)*17)) = '1' ) or 
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     ((reg_a(((I-1)*17)+1) xor 
reg_b(((I-1)*17)+1)) = '1' ) then 

                sumdiff <= '1'; 
            end if; 
        end loop; 
 
        dout <= reg_a(0); 
 
    end if; 
 
 
end process; 
 
end sr_sequence; 
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O. SHIFT REGISTER MODULE FLIP-FLOPS ONLY 
------------------------------------------------- 
-- filename: sr_testing.vhd 
-- author: James Coudeyras (2005) 
-- 
-- This file is for the flip-flop only shift register (noSRL) 
-- used for X2 which will be used as the initial test 
-- for proton radiation testing at UC-Davis. 
-- 
------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity sr_testing is 
 
    generic ( WIDTH : integer := 320);  
 -- SR length (2400 for C1, 300 for C1-no SRL, , 12000 

for C2) 
 
    Port  ( clock       : in std_logic; 
        reset           : in std_logic; 
        ce              : in std_logic; 
        din             : in std_logic; 
        dout            : out std_logic; 
        sumdiff         : out std_logic ); 
 
end sr_testing; 
 
architecture sr_sequence of sr_testing is 
    signal reg_a    : std_logic_vector (WIDTH-1 downto 0); 
    signal reg_b    : std_logic_vector (WIDTH-1 downto 0); 
 
begin 
 
process (clock, reset) 
begin 
    if (reset = '1') then 
 
        sumdiff <= '0'; 
        dout <=  '0'; 
 
    elsif (clock'event and clock='1') then 
 
        sumdiff <= '0'; 
 
        if ce='1' then 
            reg_a <= din & reg_a(WIDTH-1 downto 1); 
            reg_b <= din & reg_b(WIDTH-1 downto 1); 
        end if; 
-- LABEL1: 
        for I in 1 to (WIDTH/16) loop 
            if ( (reg_a((I-1)*16) xor reg_b((I-1)*16)) = '1' ) then 
                sumdiff <= '1'; 
            end if; 
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        end loop; 
 
        dout <= reg_a(0); 
 
    end if; 
 
 
end process; 
 
end sr_sequence; 
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P. MATLAB SCRIPT FOR DATA ANALYSIS 
% Author: Josh Snodgrass, PhD Candidate, Naval Postgraduate School 
% Nov 2005 
% Reads ASCII log file from CFTP testing and provides SM Readback stats 
% Modified: James Coudeyras, EE Master's Student, NPS 
% Added SEU count and rate. 
  
clear all; close all; clc; 
  
fname='sr_SRLp1_c1_run2.log'; 
fdescrip = 'SRL & FF, Virtex 1, run 2'; 
  
fid=fopen(fname,'r'); 
if (fid==-1);   error('Invalid filename');  end; 
frewind(fid); 
  
SMold=0; 
SMnew=0; 
SMstart=0; 
SMnewtrend=[]; 
zero2one=0; 
one2zero=0; 
NumRecon=0; 
  
logline=[]; 
  
while (~feof(fid)) 
  logline=fgetl(fid); 
   
  if (length(logline)>18) 
    if (logline(1:18)=='Selectmap Reconfig') 
      SMold=0; 
      SMarray=[]; 
      NumRecon = NumRecon + 1; 
    elseif (logline(1:18)=='Selectmap Readback') 
      SMstart=1; 
      SMnew=0; 
    elseif (logline(1:5)=='Read:') 
      NewEntry=1;  % assume we have a new entry 
      for (i=1:1:SMold+SMnew) 
        if (logline(1:50)==SMarray(i,1:50))  % all lines have > 50 
characters 
          NewEntry=0;  % negate flag if entry already exists 
        end; 
      end; 
      if (NewEntry) 
        SMnew=SMnew+1; 
        SMarray(SMold+SMnew,1:length(logline))=logline; 
        %disp(logline);  % show each of the new SEUs 
        badbyte=dec2bin2(hex2dec(logline(7:8))); 
        goodbyte=dec2bin2(hex2dec(logline(21:22))); 
        zero2one=zero2one+sum((badbyte-goodbyte)>0); 
        one2zero=one2zero+sum((goodbyte-badbyte)>0); 
        if (abs(sum(xor(badbyte,goodbyte)))>1) 
            disp(logline), 



136 

        end 
      end 
    end 
  elseif strcmp(logline,'')&(SMstart) 
    fprintf('Selectmap Readback #%i\n',length(SMnewtrend)+1); 
    fprintf('Total SEUs = Old SEUs + New SEUs\n'); 
    fprintf('      %-4i =     %-4i +     %-
4i\n',SMold+SMnew,SMold,SMnew); 
    fprintf('# of 0->1 = %i,  # of 1->0 = %i\n\n',zero2one,one2zero); 
    SMold=SMold+SMnew; 
    SMnewtrend(length(SMnewtrend)+1)=SMnew; 
    SMstart=0; 
  end 
end 
  
fclose('all'); 
  
figure(1) 
stem(SMnewtrend,'b'); 
title(['SEUs Detected via Selectmap Readback, design: ' fdescrip]); 
xlabel('Selectmap Readback Index @ 30 sec interval'); 
ylabel('SEUs per interval'); 
text(10,6,'Lower Flux') 
 
NEW_ERR = []; m = 0; 
NEW_RERR_ind = find(SMnewtrend); 
for i=1:length(NEW_RERR_ind) 
    m = NEW_RERR_ind(i); 
    NEW_RERR(i) = SMnewtrend(m); 
end 
NEW_RERR_tot = sum(NEW_RERR) 
NEW_RERR_ave = NEW_RERR_tot/length(NEW_RERR_ind) 
  
RECON_ERR = zeros(1,length(SMnewtrend)); 
k = 1; 
for i = 1:length(SMnewtrend) 
    if (SMnewtrend(i) >= 1) 
        RECON_ERR(k) = RECON_ERR(k) + SMnewtrend(i); 
    else 
        k = k + 1; 
    end 
end 
RECONlength_ind = find(RECON_ERR); 
RECONlength = max(RECONlength_ind); 
%RECONstart = min(RECONlength_ind); 
RECON_ERR = RECON_ERR(1:RECONlength); 
NumRecon 
ERR_btwn_RECON_ave = sum(RECON_ERR)/NumRecon 
  
figure(2) 
stem(RECON_ERR,'b'); 
title(['# of SEUs before Reconfiguration, design: ' fdescrip]); 
xlabel('Reconfiguration'); ylabel('SEUs'); 
text(1.5,65,'Lower Flux') 
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